 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ zget08()

 subroutine zget08 ( character TRANS, integer M, integer N, integer NRHS, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldx, * ) X, integer LDX, complex*16, dimension( ldb, * ) B, integer LDB, double precision, dimension( * ) RWORK, double precision RESID )

ZGET08

Purpose:
ZGET08 computes the residual for a solution of a system of linear
equations  A*x = b  or  A'*x = b:
RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
where EPS is the machine epsilon.
Parameters
 [in] TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A *x = b = 'T': A^T*x = b, where A^T is the transpose of A = 'C': A^H*x = b, where A^H is the conjugate transpose of A [in] M M is INTEGER The number of rows of the matrix A. M >= 0. [in] N N is INTEGER The number of columns of the matrix A. N >= 0. [in] NRHS NRHS is INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. [in] A A is COMPLEX*16 array, dimension (LDA,N) The original M x N matrix A. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M). [in] X X is COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. [in] LDX LDX is INTEGER The leading dimension of the array X. If TRANS = 'N', LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). [in,out] B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. [in] LDB LDB is INTEGER The leading dimension of the array B. IF TRANS = 'N', LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). [out] RWORK RWORK is DOUBLE PRECISION array, dimension (M) [out] RESID RESID is DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ).

Definition at line 131 of file zget08.f.

133 *
134 * -- LAPACK test routine --
135 * -- LAPACK is a software package provided by Univ. of Tennessee, --
136 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
137 *
138 * .. Scalar Arguments ..
139  CHARACTER TRANS
140  INTEGER LDA, LDB, LDX, M, N, NRHS
141  DOUBLE PRECISION RESID
142 * ..
143 * .. Array Arguments ..
144  DOUBLE PRECISION RWORK( * )
145  COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * )
146 * ..
147 *
148 * =====================================================================
149 *
150 * .. Parameters ..
151  DOUBLE PRECISION ZERO, ONE
152  parameter( zero = 0.0d+0, one = 1.0d+0 )
153  COMPLEX*16 CONE
154  parameter( cone = ( 1.0d+0, 0.0d+0 ) )
155 * ..
156 * .. Local Scalars ..
157  INTEGER J, N1, N2
158  DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
159  COMPLEX*16 ZDUM
160 * ..
161 * .. External Functions ..
162  LOGICAL LSAME
163  INTEGER IZAMAX
164  DOUBLE PRECISION DLAMCH, ZLANGE
165  EXTERNAL lsame, izamax, dlamch, zlange
166 * ..
167 * .. External Subroutines ..
168  EXTERNAL zgemm
169 * ..
170 * .. Intrinsic Functions ..
171  INTRINSIC abs, dble, dimag, max
172 * ..
173 * .. Statement Functions ..
174  DOUBLE PRECISION CABS1
175 * ..
176 * .. Statement Function definitions ..
177  cabs1( zdum ) = abs( dble( zdum ) ) + abs( dimag( zdum ) )
178 * ..
179 * .. Executable Statements ..
180 *
181 * Quick exit if M = 0 or N = 0 or NRHS = 0
182 *
183  IF( m.LE.0 .OR. n.LE.0 .OR. nrhs.EQ.0 ) THEN
184  resid = zero
185  RETURN
186  END IF
187 *
188  IF( lsame( trans, 'T' ) .OR. lsame( trans, 'C' ) ) THEN
189  n1 = n
190  n2 = m
191  ELSE
192  n1 = m
193  n2 = n
194  END IF
195 *
196 * Exit with RESID = 1/EPS if ANORM = 0.
197 *
198  eps = dlamch( 'Epsilon' )
199  anorm = zlange( 'I', n1, n2, a, lda, rwork )
200  IF( anorm.LE.zero ) THEN
201  resid = one / eps
202  RETURN
203  END IF
204 *
205 * Compute B - A*X (or B - A'*X ) and store in B.
206 *
207  CALL zgemm( trans, 'No transpose', n1, nrhs, n2, -cone, a, lda, x,
208  \$ ldx, cone, b, ldb )
209 *
210 * Compute the maximum over the number of right hand sides of
211 * norm(B - A*X) / ( norm(A) * norm(X) * EPS ) .
212 *
213  resid = zero
214  DO 10 j = 1, nrhs
215  bnorm = cabs1( b( izamax( n1, b( 1, j ), 1 ), j ) )
216  xnorm = cabs1( x( izamax( n2, x( 1, j ), 1 ), j ) )
217  IF( xnorm.LE.zero ) THEN
218  resid = one / eps
219  ELSE
220  resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
221  END IF
222  10 CONTINUE
223 *
224  RETURN
225 *
226 * End of ZGET08
227 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
integer function izamax(N, ZX, INCX)
IZAMAX
Definition: izamax.f:71
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:187
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:115
Here is the call graph for this function:
Here is the caller graph for this function: