 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ zqlt01()

 subroutine zqlt01 ( integer M, integer N, complex*16, dimension( lda, * ) A, complex*16, dimension( lda, * ) AF, complex*16, dimension( lda, * ) Q, complex*16, dimension( lda, * ) L, integer LDA, complex*16, dimension( * ) TAU, complex*16, dimension( lwork ) WORK, integer LWORK, double precision, dimension( * ) RWORK, double precision, dimension( * ) RESULT )

ZQLT01

Purpose:
ZQLT01 tests ZGEQLF, which computes the QL factorization of an m-by-n
matrix A, and partially tests ZUNGQL which forms the m-by-m
orthogonal matrix Q.

ZQLT01 compares L with Q'*A, and checks that Q is orthogonal.
Parameters
 [in] M M is INTEGER The number of rows of the matrix A. M >= 0. [in] N N is INTEGER The number of columns of the matrix A. N >= 0. [in] A A is COMPLEX*16 array, dimension (LDA,N) The m-by-n matrix A. [out] AF AF is COMPLEX*16 array, dimension (LDA,N) Details of the QL factorization of A, as returned by ZGEQLF. See ZGEQLF for further details. [out] Q Q is COMPLEX*16 array, dimension (LDA,M) The m-by-m orthogonal matrix Q. [out] L L is COMPLEX*16 array, dimension (LDA,max(M,N)) [in] LDA LDA is INTEGER The leading dimension of the arrays A, AF, Q and R. LDA >= max(M,N). [out] TAU TAU is COMPLEX*16 array, dimension (min(M,N)) The scalar factors of the elementary reflectors, as returned by ZGEQLF. [out] WORK WORK is COMPLEX*16 array, dimension (LWORK) [in] LWORK LWORK is INTEGER The dimension of the array WORK. [out] RWORK RWORK is DOUBLE PRECISION array, dimension (M) [out] RESULT RESULT is DOUBLE PRECISION array, dimension (2) The test ratios: RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS ) RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )

Definition at line 124 of file zqlt01.f.

126 *
127 * -- LAPACK test routine --
128 * -- LAPACK is a software package provided by Univ. of Tennessee, --
129 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
130 *
131 * .. Scalar Arguments ..
132  INTEGER LDA, LWORK, M, N
133 * ..
134 * .. Array Arguments ..
135  DOUBLE PRECISION RESULT( * ), RWORK( * )
136  COMPLEX*16 A( LDA, * ), AF( LDA, * ), L( LDA, * ),
137  \$ Q( LDA, * ), TAU( * ), WORK( LWORK )
138 * ..
139 *
140 * =====================================================================
141 *
142 * .. Parameters ..
143  DOUBLE PRECISION ZERO, ONE
144  parameter( zero = 0.0d+0, one = 1.0d+0 )
145  COMPLEX*16 ROGUE
146  parameter( rogue = ( -1.0d+10, -1.0d+10 ) )
147 * ..
148 * .. Local Scalars ..
149  INTEGER INFO, MINMN
150  DOUBLE PRECISION ANORM, EPS, RESID
151 * ..
152 * .. External Functions ..
153  DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
154  EXTERNAL dlamch, zlange, zlansy
155 * ..
156 * .. External Subroutines ..
157  EXTERNAL zgemm, zgeqlf, zherk, zlacpy, zlaset, zungql
158 * ..
159 * .. Intrinsic Functions ..
160  INTRINSIC dble, dcmplx, max, min
161 * ..
162 * .. Scalars in Common ..
163  CHARACTER*32 SRNAMT
164 * ..
165 * .. Common blocks ..
166  COMMON / srnamc / srnamt
167 * ..
168 * .. Executable Statements ..
169 *
170  minmn = min( m, n )
171  eps = dlamch( 'Epsilon' )
172 *
173 * Copy the matrix A to the array AF.
174 *
175  CALL zlacpy( 'Full', m, n, a, lda, af, lda )
176 *
177 * Factorize the matrix A in the array AF.
178 *
179  srnamt = 'ZGEQLF'
180  CALL zgeqlf( m, n, af, lda, tau, work, lwork, info )
181 *
182 * Copy details of Q
183 *
184  CALL zlaset( 'Full', m, m, rogue, rogue, q, lda )
185  IF( m.GE.n ) THEN
186  IF( n.LT.m .AND. n.GT.0 )
187  \$ CALL zlacpy( 'Full', m-n, n, af, lda, q( 1, m-n+1 ), lda )
188  IF( n.GT.1 )
189  \$ CALL zlacpy( 'Upper', n-1, n-1, af( m-n+1, 2 ), lda,
190  \$ q( m-n+1, m-n+2 ), lda )
191  ELSE
192  IF( m.GT.1 )
193  \$ CALL zlacpy( 'Upper', m-1, m-1, af( 1, n-m+2 ), lda,
194  \$ q( 1, 2 ), lda )
195  END IF
196 *
197 * Generate the m-by-m matrix Q
198 *
199  srnamt = 'ZUNGQL'
200  CALL zungql( m, m, minmn, q, lda, tau, work, lwork, info )
201 *
202 * Copy L
203 *
204  CALL zlaset( 'Full', m, n, dcmplx( zero ), dcmplx( zero ), l,
205  \$ lda )
206  IF( m.GE.n ) THEN
207  IF( n.GT.0 )
208  \$ CALL zlacpy( 'Lower', n, n, af( m-n+1, 1 ), lda,
209  \$ l( m-n+1, 1 ), lda )
210  ELSE
211  IF( n.GT.m .AND. m.GT.0 )
212  \$ CALL zlacpy( 'Full', m, n-m, af, lda, l, lda )
213  IF( m.GT.0 )
214  \$ CALL zlacpy( 'Lower', m, m, af( 1, n-m+1 ), lda,
215  \$ l( 1, n-m+1 ), lda )
216  END IF
217 *
218 * Compute L - Q'*A
219 *
220  CALL zgemm( 'Conjugate transpose', 'No transpose', m, n, m,
221  \$ dcmplx( -one ), q, lda, a, lda, dcmplx( one ), l,
222  \$ lda )
223 *
224 * Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
225 *
226  anorm = zlange( '1', m, n, a, lda, rwork )
227  resid = zlange( '1', m, n, l, lda, rwork )
228  IF( anorm.GT.zero ) THEN
229  result( 1 ) = ( ( resid / dble( max( 1, m ) ) ) / anorm ) / eps
230  ELSE
231  result( 1 ) = zero
232  END IF
233 *
234 * Compute I - Q'*Q
235 *
236  CALL zlaset( 'Full', m, m, dcmplx( zero ), dcmplx( one ), l, lda )
237  CALL zherk( 'Upper', 'Conjugate transpose', m, m, -one, q, lda,
238  \$ one, l, lda )
239 *
240 * Compute norm( I - Q'*Q ) / ( M * EPS ) .
241 *
242  resid = zlansy( '1', 'Upper', m, l, lda, rwork )
243 *
244  result( 2 ) = ( resid / dble( max( 1, m ) ) ) / eps
245 *
246  RETURN
247 *
248 * End of ZQLT01
249 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine zgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZGEMM
Definition: zgemm.f:187
subroutine zherk(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
ZHERK
Definition: zherk.f:173
double precision function zlange(NORM, M, N, A, LDA, WORK)
ZLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: zlange.f:115
subroutine zgeqlf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZGEQLF
Definition: zgeqlf.f:138
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine zungql(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
ZUNGQL
Definition: zungql.f:128
double precision function zlansy(NORM, UPLO, N, A, LDA, WORK)
ZLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlansy.f:123
Here is the call graph for this function:
Here is the caller graph for this function: