LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlatzm()

subroutine dlatzm ( character side,
integer m,
integer n,
double precision, dimension( * ) v,
integer incv,
double precision tau,
double precision, dimension( ldc, * ) c1,
double precision, dimension( ldc, * ) c2,
integer ldc,
double precision, dimension( * ) work )

DLATZM

Download DLATZM + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> This routine is deprecated and has been replaced by routine DORMRZ.
!>
!> DLATZM applies a Householder matrix generated by DTZRQF to a matrix.
!>
!> Let P = I - tau*u*u**T,   u = ( 1 ),
!>                               ( v )
!> where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
!> SIDE = 'R'.
!>
!> If SIDE equals 'L', let
!>        C = [ C1 ] 1
!>            [ C2 ] m-1
!>              n
!> Then C is overwritten by P*C.
!>
!> If SIDE equals 'R', let
!>        C = [ C1, C2 ] m
!>               1  n-1
!> Then C is overwritten by C*P.
!> 
Parameters
[in]SIDE
!>          SIDE is CHARACTER*1
!>          = 'L': form P * C
!>          = 'R': form C * P
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix C.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix C.
!> 
[in]V
!>          V is DOUBLE PRECISION array, dimension
!>                  (1 + (M-1)*abs(INCV)) if SIDE = 'L'
!>                  (1 + (N-1)*abs(INCV)) if SIDE = 'R'
!>          The vector v in the representation of P. V is not used
!>          if TAU = 0.
!> 
[in]INCV
!>          INCV is INTEGER
!>          The increment between elements of v. INCV <> 0
!> 
[in]TAU
!>          TAU is DOUBLE PRECISION
!>          The value tau in the representation of P.
!> 
[in,out]C1
!>          C1 is DOUBLE PRECISION array, dimension
!>                         (LDC,N) if SIDE = 'L'
!>                         (M,1)   if SIDE = 'R'
!>          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
!>          if SIDE = 'R'.
!>
!>          On exit, the first row of P*C if SIDE = 'L', or the first
!>          column of C*P if SIDE = 'R'.
!> 
[in,out]C2
!>          C2 is DOUBLE PRECISION array, dimension
!>                         (LDC, N)   if SIDE = 'L'
!>                         (LDC, N-1) if SIDE = 'R'
!>          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
!>          m x (n - 1) matrix C2 if SIDE = 'R'.
!>
!>          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
!>          if SIDE = 'R'.
!> 
[in]LDC
!>          LDC is INTEGER
!>          The leading dimension of the arrays C1 and C2. LDC >= (1,M).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension
!>                      (N) if SIDE = 'L'
!>                      (M) if SIDE = 'R'
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 148 of file dlatzm.f.

150*
151* -- LAPACK computational routine --
152* -- LAPACK is a software package provided by Univ. of Tennessee, --
153* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
154*
155* .. Scalar Arguments ..
156 CHARACTER SIDE
157 INTEGER INCV, LDC, M, N
158 DOUBLE PRECISION TAU
159* ..
160* .. Array Arguments ..
161 DOUBLE PRECISION C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
162* ..
163*
164* =====================================================================
165*
166* .. Parameters ..
167 DOUBLE PRECISION ONE, ZERO
168 parameter( one = 1.0d+0, zero = 0.0d+0 )
169* ..
170* .. External Subroutines ..
171 EXTERNAL daxpy, dcopy, dgemv, dger
172* ..
173* .. External Functions ..
174 LOGICAL LSAME
175 EXTERNAL lsame
176* ..
177* .. Intrinsic Functions ..
178 INTRINSIC min
179* ..
180* .. Executable Statements ..
181*
182 IF( ( min( m, n ).EQ.0 ) .OR. ( tau.EQ.zero ) )
183 $ RETURN
184*
185 IF( lsame( side, 'L' ) ) THEN
186*
187* w := (C1 + v**T * C2)**T
188*
189 CALL dcopy( n, c1, ldc, work, 1 )
190 CALL dgemv( 'Transpose', m-1, n, one, c2, ldc, v, incv, one,
191 $ work, 1 )
192*
193* [ C1 ] := [ C1 ] - tau* [ 1 ] * w**T
194* [ C2 ] [ C2 ] [ v ]
195*
196 CALL daxpy( n, -tau, work, 1, c1, ldc )
197 CALL dger( m-1, n, -tau, v, incv, work, 1, c2, ldc )
198*
199 ELSE IF( lsame( side, 'R' ) ) THEN
200*
201* w := C1 + C2 * v
202*
203 CALL dcopy( m, c1, 1, work, 1 )
204 CALL dgemv( 'No transpose', m, n-1, one, c2, ldc, v, incv,
205 $ one, work, 1 )
206*
207* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**T]
208*
209 CALL daxpy( m, -tau, work, 1, c1, 1 )
210 CALL dger( m, n-1, -tau, work, 1, v, incv, c2, ldc )
211 END IF
212*
213 RETURN
214*
215* End of DLATZM
216*
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
DGEMV
Definition dgemv.f:158
subroutine dger(m, n, alpha, x, incx, y, incy, a, lda)
DGER
Definition dger.f:130
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: