LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ slangb()

 real function slangb ( character NORM, integer N, integer KL, integer KU, real, dimension( ldab, * ) AB, integer LDAB, real, dimension( * ) WORK )

SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.

Download SLANGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
``` SLANGB  returns the value of the one norm,  or the Frobenius norm, or
the  infinity norm,  or the element of  largest absolute value  of an
n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.```
Returns
SLANGB
```    SLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A),         NORM = '1', 'O' or 'o'
(
( normI(A),         NORM = 'I' or 'i'
(
( normF(A),         NORM = 'F', 'f', 'E' or 'e'

where  norm1  denotes the  one norm of a matrix (maximum column sum),
normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
normF  denotes the  Frobenius norm of a matrix (square root of sum of
squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.```
Parameters
 [in] NORM ``` NORM is CHARACTER*1 Specifies the value to be returned in SLANGB as described above.``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0. When N = 0, SLANGB is set to zero.``` [in] KL ``` KL is INTEGER The number of sub-diagonals of the matrix A. KL >= 0.``` [in] KU ``` KU is INTEGER The number of super-diagonals of the matrix A. KU >= 0.``` [in] AB ``` AB is REAL array, dimension (LDAB,N) The band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.``` [out] WORK ``` WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I'; otherwise, WORK is not referenced.```

Definition at line 122 of file slangb.f.

124 *
125 * -- LAPACK auxiliary routine --
126 * -- LAPACK is a software package provided by Univ. of Tennessee, --
127 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128 *
129  IMPLICIT NONE
130 * .. Scalar Arguments ..
131  CHARACTER NORM
132  INTEGER KL, KU, LDAB, N
133 * ..
134 * .. Array Arguments ..
135  REAL AB( LDAB, * ), WORK( * )
136 * ..
137 *
138 * =====================================================================
139 *
140 * .. Parameters ..
141  REAL ONE, ZERO
142  parameter( one = 1.0e+0, zero = 0.0e+0 )
143 * ..
144 * .. Local Scalars ..
145  INTEGER I, J, K, L
146  REAL SUM, VALUE, TEMP
147 * ..
148 * .. Local Arrays ..
149  REAL SSQ( 2 ), COLSSQ( 2 )
150 * ..
151 * .. External Functions ..
152  LOGICAL LSAME, SISNAN
153  EXTERNAL lsame, sisnan
154 * ..
155 * .. External Subroutines ..
156  EXTERNAL slassq, scombssq
157 * ..
158 * .. Intrinsic Functions ..
159  INTRINSIC abs, max, min, sqrt
160 * ..
161 * .. Executable Statements ..
162 *
163  IF( n.EQ.0 ) THEN
164  VALUE = zero
165  ELSE IF( lsame( norm, 'M' ) ) THEN
166 *
167 * Find max(abs(A(i,j))).
168 *
169  VALUE = zero
170  DO 20 j = 1, n
171  DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
172  temp = abs( ab( i, j ) )
173  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
174  10 CONTINUE
175  20 CONTINUE
176  ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
177 *
178 * Find norm1(A).
179 *
180  VALUE = zero
181  DO 40 j = 1, n
182  sum = zero
183  DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
184  sum = sum + abs( ab( i, j ) )
185  30 CONTINUE
186  IF( VALUE.LT.sum .OR. sisnan( sum ) ) VALUE = sum
187  40 CONTINUE
188  ELSE IF( lsame( norm, 'I' ) ) THEN
189 *
190 * Find normI(A).
191 *
192  DO 50 i = 1, n
193  work( i ) = zero
194  50 CONTINUE
195  DO 70 j = 1, n
196  k = ku + 1 - j
197  DO 60 i = max( 1, j-ku ), min( n, j+kl )
198  work( i ) = work( i ) + abs( ab( k+i, j ) )
199  60 CONTINUE
200  70 CONTINUE
201  VALUE = zero
202  DO 80 i = 1, n
203  temp = work( i )
204  IF( VALUE.LT.temp .OR. sisnan( temp ) ) VALUE = temp
205  80 CONTINUE
206  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
207 *
208 * Find normF(A).
209 * SSQ(1) is scale
210 * SSQ(2) is sum-of-squares
211 * For better accuracy, sum each column separately.
212 *
213  ssq( 1 ) = zero
214  ssq( 2 ) = one
215  DO 90 j = 1, n
216  l = max( 1, j-ku )
217  k = ku + 1 - j + l
218  colssq( 1 ) = zero
219  colssq( 2 ) = one
220  CALL slassq( min( n, j+kl )-l+1, ab( k, j ), 1,
221  \$ colssq( 1 ), colssq( 2 ) )
222  CALL scombssq( ssq, colssq )
223  90 CONTINUE
224  VALUE = ssq( 1 )*sqrt( ssq( 2 ) )
225  END IF
226 *
227  slangb = VALUE
228  RETURN
229 *
230 * End of SLANGB
231 *
subroutine slassq(n, x, incx, scl, sumsq)
SLASSQ updates a sum of squares represented in scaled form.
Definition: slassq.f90:126
subroutine scombssq(V1, V2)
SCOMBSSQ adds two scaled sum of squares quantities
Definition: scombssq.f:60
logical function sisnan(SIN)
SISNAN tests input for NaN.
Definition: sisnan.f:59
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function slangb(NORM, N, KL, KU, AB, LDAB, WORK)
SLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slangb.f:124
Here is the call graph for this function:
Here is the caller graph for this function: