LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ LAPACKE_ctgsja_work()

lapack_int LAPACKE_ctgsja_work ( int  matrix_layout,
char  jobu,
char  jobv,
char  jobq,
lapack_int  m,
lapack_int  p,
lapack_int  n,
lapack_int  k,
lapack_int  l,
lapack_complex_float a,
lapack_int  lda,
lapack_complex_float b,
lapack_int  ldb,
float  tola,
float  tolb,
float *  alpha,
float *  beta,
lapack_complex_float u,
lapack_int  ldu,
lapack_complex_float v,
lapack_int  ldv,
lapack_complex_float q,
lapack_int  ldq,
lapack_complex_float work,
lapack_int ncycle 
)

Definition at line 35 of file lapacke_ctgsja_work.c.

46 {
47  lapack_int info = 0;
48  if( matrix_layout == LAPACK_COL_MAJOR ) {
49  /* Call LAPACK function and adjust info */
50  LAPACK_ctgsja( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a, &lda, b,
51  &ldb, &tola, &tolb, alpha, beta, u, &ldu, v, &ldv, q,
52  &ldq, work, ncycle, &info );
53  if( info < 0 ) {
54  info = info - 1;
55  }
56  } else if( matrix_layout == LAPACK_ROW_MAJOR ) {
57  lapack_int lda_t = MAX(1,m);
58  lapack_int ldb_t = MAX(1,p);
59  lapack_int ldq_t = MAX(1,n);
60  lapack_int ldu_t = MAX(1,m);
61  lapack_int ldv_t = MAX(1,p);
62  lapack_complex_float* a_t = NULL;
63  lapack_complex_float* b_t = NULL;
64  lapack_complex_float* u_t = NULL;
65  lapack_complex_float* v_t = NULL;
66  lapack_complex_float* q_t = NULL;
67  /* Check leading dimension(s) */
68  if( lda < n ) {
69  info = -11;
70  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
71  return info;
72  }
73  if( ldb < n ) {
74  info = -13;
75  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
76  return info;
77  }
78  if( ldq < n ) {
79  info = -23;
80  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
81  return info;
82  }
83  if( ldu < m ) {
84  info = -19;
85  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
86  return info;
87  }
88  if( ldv < p ) {
89  info = -21;
90  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
91  return info;
92  }
93  /* Allocate memory for temporary array(s) */
94  a_t = (lapack_complex_float*)
95  LAPACKE_malloc( sizeof(lapack_complex_float) * lda_t * MAX(1,n) );
96  if( a_t == NULL ) {
98  goto exit_level_0;
99  }
100  b_t = (lapack_complex_float*)
101  LAPACKE_malloc( sizeof(lapack_complex_float) * ldb_t * MAX(1,n) );
102  if( b_t == NULL ) {
104  goto exit_level_1;
105  }
106  if( LAPACKE_lsame( jobu, 'i' ) || LAPACKE_lsame( jobu, 'u' ) ) {
107  u_t = (lapack_complex_float*)
109  ldu_t * MAX(1,m) );
110  if( u_t == NULL ) {
112  goto exit_level_2;
113  }
114  }
115  if( LAPACKE_lsame( jobv, 'i' ) || LAPACKE_lsame( jobv, 'v' ) ) {
116  v_t = (lapack_complex_float*)
118  ldv_t * MAX(1,p) );
119  if( v_t == NULL ) {
121  goto exit_level_3;
122  }
123  }
124  if( LAPACKE_lsame( jobq, 'i' ) || LAPACKE_lsame( jobq, 'q' ) ) {
125  q_t = (lapack_complex_float*)
127  ldq_t * MAX(1,n) );
128  if( q_t == NULL ) {
130  goto exit_level_4;
131  }
132  }
133  /* Transpose input matrices */
134  LAPACKE_cge_trans( matrix_layout, m, n, a, lda, a_t, lda_t );
135  LAPACKE_cge_trans( matrix_layout, p, n, b, ldb, b_t, ldb_t );
136  if( LAPACKE_lsame( jobu, 'u' ) ) {
137  LAPACKE_cge_trans( matrix_layout, m, m, u, ldu, u_t, ldu_t );
138  }
139  if( LAPACKE_lsame( jobv, 'v' ) ) {
140  LAPACKE_cge_trans( matrix_layout, p, p, v, ldv, v_t, ldv_t );
141  }
142  if( LAPACKE_lsame( jobq, 'q' ) ) {
143  LAPACKE_cge_trans( matrix_layout, n, n, q, ldq, q_t, ldq_t );
144  }
145  /* Call LAPACK function and adjust info */
146  LAPACK_ctgsja( &jobu, &jobv, &jobq, &m, &p, &n, &k, &l, a_t, &lda_t,
147  b_t, &ldb_t, &tola, &tolb, alpha, beta, u_t, &ldu_t, v_t,
148  &ldv_t, q_t, &ldq_t, work, ncycle, &info );
149  if( info < 0 ) {
150  info = info - 1;
151  }
152  /* Transpose output matrices */
153  LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, n, a_t, lda_t, a, lda );
154  LAPACKE_cge_trans( LAPACK_COL_MAJOR, p, n, b_t, ldb_t, b, ldb );
155  if( LAPACKE_lsame( jobu, 'i' ) || LAPACKE_lsame( jobu, 'u' ) ) {
156  LAPACKE_cge_trans( LAPACK_COL_MAJOR, m, m, u_t, ldu_t, u, ldu );
157  }
158  if( LAPACKE_lsame( jobv, 'i' ) || LAPACKE_lsame( jobv, 'v' ) ) {
159  LAPACKE_cge_trans( LAPACK_COL_MAJOR, p, p, v_t, ldv_t, v, ldv );
160  }
161  if( LAPACKE_lsame( jobq, 'i' ) || LAPACKE_lsame( jobq, 'q' ) ) {
162  LAPACKE_cge_trans( LAPACK_COL_MAJOR, n, n, q_t, ldq_t, q, ldq );
163  }
164  /* Release memory and exit */
165  if( LAPACKE_lsame( jobq, 'i' ) || LAPACKE_lsame( jobq, 'q' ) ) {
166  LAPACKE_free( q_t );
167  }
168 exit_level_4:
169  if( LAPACKE_lsame( jobv, 'i' ) || LAPACKE_lsame( jobv, 'v' ) ) {
170  LAPACKE_free( v_t );
171  }
172 exit_level_3:
173  if( LAPACKE_lsame( jobu, 'i' ) || LAPACKE_lsame( jobu, 'u' ) ) {
174  LAPACKE_free( u_t );
175  }
176 exit_level_2:
177  LAPACKE_free( b_t );
178 exit_level_1:
179  LAPACKE_free( a_t );
180 exit_level_0:
181  if( info == LAPACK_TRANSPOSE_MEMORY_ERROR ) {
182  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
183  }
184  } else {
185  info = -1;
186  LAPACKE_xerbla( "LAPACKE_ctgsja_work", info );
187  }
188  return info;
189 }
#define LAPACK_ctgsja(...)
Definition: lapack.h:20251
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_float
Definition: lapack.h:45
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
#define LAPACK_TRANSPOSE_MEMORY_ERROR
Definition: lapacke.h:56
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
#define MAX(x, y)
Definition: lapacke_utils.h:46
void LAPACKE_cge_trans(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_float *in, lapack_int ldin, lapack_complex_float *out, lapack_int ldout)
Here is the call graph for this function:
Here is the caller graph for this function: