![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlae2 | ( | double precision | a, |
double precision | b, | ||
double precision | c, | ||
double precision | rt1, | ||
double precision | rt2 ) |
DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix.
Download DLAE2 + dependencies [TGZ] [ZIP] [TXT]
!> !> DLAE2 computes the eigenvalues of a 2-by-2 symmetric matrix !> [ A B ] !> [ B C ]. !> On return, RT1 is the eigenvalue of larger absolute value, and RT2 !> is the eigenvalue of smaller absolute value. !>
[in] | A | !> A is DOUBLE PRECISION !> The (1,1) element of the 2-by-2 matrix. !> |
[in] | B | !> B is DOUBLE PRECISION !> The (1,2) and (2,1) elements of the 2-by-2 matrix. !> |
[in] | C | !> C is DOUBLE PRECISION !> The (2,2) element of the 2-by-2 matrix. !> |
[out] | RT1 | !> RT1 is DOUBLE PRECISION !> The eigenvalue of larger absolute value. !> |
[out] | RT2 | !> RT2 is DOUBLE PRECISION !> The eigenvalue of smaller absolute value. !> |
!> !> RT1 is accurate to a few ulps barring over/underflow. !> !> RT2 may be inaccurate if there is massive cancellation in the !> determinant A*C-B*B; higher precision or correctly rounded or !> correctly truncated arithmetic would be needed to compute RT2 !> accurately in all cases. !> !> Overflow is possible only if RT1 is within a factor of 5 of overflow. !> Underflow is harmless if the input data is 0 or exceeds !> underflow_threshold / macheps. !>
Definition at line 99 of file dlae2.f.