LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ ssbevd()

subroutine ssbevd ( character  JOBZ,
character  UPLO,
integer  N,
integer  KD,
real, dimension( ldab, * )  AB,
integer  LDAB,
real, dimension( * )  W,
real, dimension( ldz, * )  Z,
integer  LDZ,
real, dimension( * )  WORK,
integer  LWORK,
integer, dimension( * )  IWORK,
integer  LIWORK,
integer  INFO 
)

SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Download SSBEVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
 a real symmetric band matrix A. If eigenvectors are desired, it uses
 a divide and conquer algorithm.

 The divide and conquer algorithm makes very mild assumptions about
 floating point arithmetic. It will work on machines with a guard
 digit in add/subtract, or on those binary machines without guard
 digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
 Cray-2. It could conceivably fail on hexadecimal or decimal machines
 without guard digits, but we know of none.
Parameters
[in]JOBZ
          JOBZ is CHARACTER*1
          = 'N':  Compute eigenvalues only;
          = 'V':  Compute eigenvalues and eigenvectors.
[in]UPLO
          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.
[in]N
          N is INTEGER
          The order of the matrix A.  N >= 0.
[in]KD
          KD is INTEGER
          The number of superdiagonals of the matrix A if UPLO = 'U',
          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
[in,out]AB
          AB is REAL array, dimension (LDAB, N)
          On entry, the upper or lower triangle of the symmetric band
          matrix A, stored in the first KD+1 rows of the array.  The
          j-th column of A is stored in the j-th column of the array AB
          as follows:
          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).

          On exit, AB is overwritten by values generated during the
          reduction to tridiagonal form.  If UPLO = 'U', the first
          superdiagonal and the diagonal of the tridiagonal matrix T
          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
          the diagonal and first subdiagonal of T are returned in the
          first two rows of AB.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KD + 1.
[out]W
          W is REAL array, dimension (N)
          If INFO = 0, the eigenvalues in ascending order.
[out]Z
          Z is REAL array, dimension (LDZ, N)
          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
          eigenvectors of the matrix A, with the i-th column of Z
          holding the eigenvector associated with W(i).
          If JOBZ = 'N', then Z is not referenced.
[in]LDZ
          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          JOBZ = 'V', LDZ >= max(1,N).
[out]WORK
          WORK is REAL array,
                                         dimension (LWORK)
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.
          IF N <= 1,                LWORK must be at least 1.
          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
          If JOBZ  = 'V' and N > 2, LWORK must be at least
                         ( 1 + 5*N + 2*N**2 ).

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal sizes of the WORK and IWORK
          arrays, returns these values as the first entries of the WORK
          and IWORK arrays, and no error message related to LWORK or
          LIWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
[in]LIWORK
          LIWORK is INTEGER
          The dimension of the array IWORK.
          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.

          If LIWORK = -1, then a workspace query is assumed; the
          routine only calculates the optimal sizes of the WORK and
          IWORK arrays, returns these values as the first entries of
          the WORK and IWORK arrays, and no error message related to
          LWORK or LIWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the algorithm failed to converge; i
                off-diagonal elements of an intermediate tridiagonal
                form did not converge to zero.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 191 of file ssbevd.f.

193 *
194 * -- LAPACK driver routine --
195 * -- LAPACK is a software package provided by Univ. of Tennessee, --
196 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
197 *
198 * .. Scalar Arguments ..
199  CHARACTER JOBZ, UPLO
200  INTEGER INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
201 * ..
202 * .. Array Arguments ..
203  INTEGER IWORK( * )
204  REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
205 * ..
206 *
207 * =====================================================================
208 *
209 * .. Parameters ..
210  REAL ZERO, ONE
211  parameter( zero = 0.0e+0, one = 1.0e+0 )
212 * ..
213 * .. Local Scalars ..
214  LOGICAL LOWER, LQUERY, WANTZ
215  INTEGER IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
216  $ LLWRK2, LWMIN
217  REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
218  $ SMLNUM
219 * ..
220 * .. External Functions ..
221  LOGICAL LSAME
222  REAL SLAMCH, SLANSB
223  EXTERNAL lsame, slamch, slansb
224 * ..
225 * .. External Subroutines ..
226  EXTERNAL sgemm, slacpy, slascl, ssbtrd, sscal, sstedc,
227  $ ssterf, xerbla
228 * ..
229 * .. Intrinsic Functions ..
230  INTRINSIC sqrt
231 * ..
232 * .. Executable Statements ..
233 *
234 * Test the input parameters.
235 *
236  wantz = lsame( jobz, 'V' )
237  lower = lsame( uplo, 'L' )
238  lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
239 *
240  info = 0
241  IF( n.LE.1 ) THEN
242  liwmin = 1
243  lwmin = 1
244  ELSE
245  IF( wantz ) THEN
246  liwmin = 3 + 5*n
247  lwmin = 1 + 5*n + 2*n**2
248  ELSE
249  liwmin = 1
250  lwmin = 2*n
251  END IF
252  END IF
253  IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
254  info = -1
255  ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
256  info = -2
257  ELSE IF( n.LT.0 ) THEN
258  info = -3
259  ELSE IF( kd.LT.0 ) THEN
260  info = -4
261  ELSE IF( ldab.LT.kd+1 ) THEN
262  info = -6
263  ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
264  info = -9
265  END IF
266 *
267  IF( info.EQ.0 ) THEN
268  work( 1 ) = lwmin
269  iwork( 1 ) = liwmin
270 *
271  IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
272  info = -11
273  ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
274  info = -13
275  END IF
276  END IF
277 *
278  IF( info.NE.0 ) THEN
279  CALL xerbla( 'SSBEVD', -info )
280  RETURN
281  ELSE IF( lquery ) THEN
282  RETURN
283  END IF
284 *
285 * Quick return if possible
286 *
287  IF( n.EQ.0 )
288  $ RETURN
289 *
290  IF( n.EQ.1 ) THEN
291  w( 1 ) = ab( 1, 1 )
292  IF( wantz )
293  $ z( 1, 1 ) = one
294  RETURN
295  END IF
296 *
297 * Get machine constants.
298 *
299  safmin = slamch( 'Safe minimum' )
300  eps = slamch( 'Precision' )
301  smlnum = safmin / eps
302  bignum = one / smlnum
303  rmin = sqrt( smlnum )
304  rmax = sqrt( bignum )
305 *
306 * Scale matrix to allowable range, if necessary.
307 *
308  anrm = slansb( 'M', uplo, n, kd, ab, ldab, work )
309  iscale = 0
310  IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
311  iscale = 1
312  sigma = rmin / anrm
313  ELSE IF( anrm.GT.rmax ) THEN
314  iscale = 1
315  sigma = rmax / anrm
316  END IF
317  IF( iscale.EQ.1 ) THEN
318  IF( lower ) THEN
319  CALL slascl( 'B', kd, kd, one, sigma, n, n, ab, ldab, info )
320  ELSE
321  CALL slascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab, info )
322  END IF
323  END IF
324 *
325 * Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
326 *
327  inde = 1
328  indwrk = inde + n
329  indwk2 = indwrk + n*n
330  llwrk2 = lwork - indwk2 + 1
331  CALL ssbtrd( jobz, uplo, n, kd, ab, ldab, w, work( inde ), z, ldz,
332  $ work( indwrk ), iinfo )
333 *
334 * For eigenvalues only, call SSTERF. For eigenvectors, call SSTEDC.
335 *
336  IF( .NOT.wantz ) THEN
337  CALL ssterf( n, w, work( inde ), info )
338  ELSE
339  CALL sstedc( 'I', n, w, work( inde ), work( indwrk ), n,
340  $ work( indwk2 ), llwrk2, iwork, liwork, info )
341  CALL sgemm( 'N', 'N', n, n, n, one, z, ldz, work( indwrk ), n,
342  $ zero, work( indwk2 ), n )
343  CALL slacpy( 'A', n, n, work( indwk2 ), n, z, ldz )
344  END IF
345 *
346 * If matrix was scaled, then rescale eigenvalues appropriately.
347 *
348  IF( iscale.EQ.1 )
349  $ CALL sscal( n, one / sigma, w, 1 )
350 *
351  work( 1 ) = lwmin
352  iwork( 1 ) = liwmin
353  RETURN
354 *
355 * End of SSBEVD
356 *
subroutine slascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: slascl.f:143
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine sstedc(COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)
SSTEDC
Definition: sstedc.f:188
subroutine ssterf(N, D, E, INFO)
SSTERF
Definition: ssterf.f:86
real function slansb(NORM, UPLO, N, K, AB, LDAB, WORK)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansb.f:129
subroutine ssbtrd(VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, WORK, INFO)
SSBTRD
Definition: ssbtrd.f:163
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:79
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:187
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: