LAPACK 3.12.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ cchktz()

 subroutine cchktz ( logical, dimension( * ) dotype, integer nm, integer, dimension( * ) mval, integer nn, integer, dimension( * ) nval, real thresh, logical tsterr, complex, dimension( * ) a, complex, dimension( * ) copya, real, dimension( * ) s, complex, dimension( * ) tau, complex, dimension( * ) work, real, dimension( * ) rwork, integer nout )

CCHKTZ

Purpose:
` CCHKTZ tests CTZRZF.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [out] A ``` A is COMPLEX array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL.``` [out] COPYA ` COPYA is COMPLEX array, dimension (MMAX*NMAX)` [out] S ``` S is REAL array, dimension (min(MMAX,NMAX))``` [out] TAU ` TAU is COMPLEX array, dimension (MMAX)` [out] WORK ``` WORK is COMPLEX array, dimension (MMAX*NMAX + 4*NMAX + MMAX)``` [out] RWORK ` RWORK is REAL array, dimension (2*NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 135 of file cchktz.f.

137*
138* -- LAPACK test routine --
139* -- LAPACK is a software package provided by Univ. of Tennessee, --
140* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142* .. Scalar Arguments ..
143 LOGICAL TSTERR
144 INTEGER NM, NN, NOUT
145 REAL THRESH
146* ..
147* .. Array Arguments ..
148 LOGICAL DOTYPE( * )
149 INTEGER MVAL( * ), NVAL( * )
150 REAL S( * ), RWORK( * )
151 COMPLEX A( * ), COPYA( * ), TAU( * ), WORK( * )
152* ..
153*
154* =====================================================================
155*
156* .. Parameters ..
157 INTEGER NTYPES
158 parameter( ntypes = 3 )
159 INTEGER NTESTS
160 parameter( ntests = 3 )
161 REAL ONE, ZERO
162 parameter( one = 1.0e0, zero = 0.0e0 )
163* ..
164* .. Local Scalars ..
165 CHARACTER*3 PATH
166 INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M,
167 \$ MNMIN, MODE, N, NERRS, NFAIL, NRUN
168 REAL EPS
169* ..
170* .. Local Arrays ..
171 INTEGER ISEED( 4 ), ISEEDY( 4 )
172 REAL RESULT( NTESTS )
173* ..
174* .. External Functions ..
175 REAL CQRT12, CRZT01, CRZT02, SLAMCH
176 EXTERNAL cqrt12, crzt01, crzt02, slamch
177* ..
178* .. External Subroutines ..
179 EXTERNAL alahd, alasum, cerrtz, cgeqr2, clacpy, claset,
181* ..
182* .. Intrinsic Functions ..
183 INTRINSIC cmplx, max, min
184* ..
185* .. Scalars in Common ..
186 LOGICAL LERR, OK
187 CHARACTER*32 SRNAMT
188 INTEGER INFOT, IOUNIT
189* ..
190* .. Common blocks ..
191 COMMON / infoc / infot, iounit, ok, lerr
192 COMMON / srnamc / srnamt
193* ..
194* .. Data statements ..
195 DATA iseedy / 1988, 1989, 1990, 1991 /
196* ..
197* .. Executable Statements ..
198*
199* Initialize constants and the random number seed.
200*
201 path( 1: 1 ) = 'Complex precision'
202 path( 2: 3 ) = 'TZ'
203 nrun = 0
204 nfail = 0
205 nerrs = 0
206 DO 10 i = 1, 4
207 iseed( i ) = iseedy( i )
208 10 CONTINUE
209 eps = slamch( 'Epsilon' )
210*
211* Test the error exits
212*
213 IF( tsterr )
214 \$ CALL cerrtz( path, nout )
215 infot = 0
216*
217 DO 70 im = 1, nm
218*
219* Do for each value of M in MVAL.
220*
221 m = mval( im )
222 lda = max( 1, m )
223*
224 DO 60 in = 1, nn
225*
226* Do for each value of N in NVAL for which M .LE. N.
227*
228 n = nval( in )
229 mnmin = min( m, n )
230 lwork = max( 1, n*n+4*m+n )
231*
232 IF( m.LE.n ) THEN
233 DO 50 imode = 1, ntypes
234 IF( .NOT.dotype( imode ) )
235 \$ GO TO 50
236*
237* Do for each type of singular value distribution.
238* 0: zero matrix
239* 1: one small singular value
240* 2: exponential distribution
241*
242 mode = imode - 1
243*
244* Test CTZRZF
245*
246* Generate test matrix of size m by n using
247* singular value distribution indicated by `mode'.
248*
249 IF( mode.EQ.0 ) THEN
250 CALL claset( 'Full', m, n, cmplx( zero ),
251 \$ cmplx( zero ), a, lda )
252 DO 30 i = 1, mnmin
253 s( i ) = zero
254 30 CONTINUE
255 ELSE
256 CALL clatms( m, n, 'Uniform', iseed,
257 \$ 'Nonsymmetric', s, imode,
258 \$ one / eps, one, m, n, 'No packing', a,
259 \$ lda, work, info )
260 CALL cgeqr2( m, n, a, lda, work, work( mnmin+1 ),
261 \$ info )
262 CALL claset( 'Lower', m-1, n, cmplx( zero ),
263 \$ cmplx( zero ), a( 2 ), lda )
264 CALL slaord( 'Decreasing', mnmin, s, 1 )
265 END IF
266*
267* Save A and its singular values
268*
269 CALL clacpy( 'All', m, n, a, lda, copya, lda )
270*
271* Call CTZRZF to reduce the upper trapezoidal matrix to
272* upper triangular form.
273*
274 srnamt = 'CTZRZF'
275 CALL ctzrzf( m, n, a, lda, tau, work, lwork, info )
276*
277* Compute norm(svd(a) - svd(r))
278*
279 result( 1 ) = cqrt12( m, m, a, lda, s, work,
280 \$ lwork, rwork )
281*
282* Compute norm( A - R*Q )
283*
284 result( 2 ) = crzt01( m, n, copya, a, lda, tau, work,
285 \$ lwork )
286*
287* Compute norm(Q'*Q - I).
288*
289 result( 3 ) = crzt02( m, n, a, lda, tau, work, lwork )
290*
291* Print information about the tests that did not pass
292* the threshold.
293*
294 DO 40 k = 1, ntests
295 IF( result( k ).GE.thresh ) THEN
296 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
297 \$ CALL alahd( nout, path )
298 WRITE( nout, fmt = 9999 )m, n, imode, k,
299 \$ result( k )
300 nfail = nfail + 1
301 END IF
302 40 CONTINUE
303 nrun = nrun + 3
304 50 CONTINUE
305 END IF
306 60 CONTINUE
307 70 CONTINUE
308*
309* Print a summary of the results.
310*
311 CALL alasum( path, nout, nfail, nrun, nerrs )
312*
313 9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
314 \$ ', ratio =', g12.5 )
315*
316* End if CCHKTZ
317*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine cerrtz(path, nunit)
CERRTZ
Definition cerrtz.f:54
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
real function cqrt12(m, n, a, lda, s, work, lwork, rwork)
CQRT12
Definition cqrt12.f:97
real function crzt01(m, n, a, af, lda, tau, work, lwork)
CRZT01
Definition crzt01.f:98
real function crzt02(m, n, af, lda, tau, work, lwork)
CRZT02
Definition crzt02.f:91
subroutine cgeqr2(m, n, a, lda, tau, work, info)
CGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition cgeqr2.f:130
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine ctzrzf(m, n, a, lda, tau, work, lwork, info)
CTZRZF
Definition ctzrzf.f:151
subroutine slaord(job, n, x, incx)
SLAORD
Definition slaord.f:73
Here is the call graph for this function:
Here is the caller graph for this function: