![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
| subroutine dlarrc | ( | character | jobt, |
| integer | n, | ||
| double precision | vl, | ||
| double precision | vu, | ||
| double precision, dimension( * ) | d, | ||
| double precision, dimension( * ) | e, | ||
| double precision | pivmin, | ||
| integer | eigcnt, | ||
| integer | lcnt, | ||
| integer | rcnt, | ||
| integer | info ) |
DLARRC computes the number of eigenvalues of the symmetric tridiagonal matrix.
Download DLARRC + dependencies [TGZ] [ZIP] [TXT]
!> !> Find the number of eigenvalues of the symmetric tridiagonal matrix T !> that are in the interval (VL,VU] if JOBT = 'T', and of L D L^T !> if JOBT = 'L'. !>
| [in] | JOBT | !> JOBT is CHARACTER*1 !> = 'T': Compute Sturm count for matrix T. !> = 'L': Compute Sturm count for matrix L D L^T. !> |
| [in] | N | !> N is INTEGER !> The order of the matrix. N > 0. !> |
| [in] | VL | !> VL is DOUBLE PRECISION !> The lower bound for the eigenvalues. !> |
| [in] | VU | !> VU is DOUBLE PRECISION !> The upper bound for the eigenvalues. !> |
| [in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> JOBT = 'T': The N diagonal elements of the tridiagonal matrix T. !> JOBT = 'L': The N diagonal elements of the diagonal matrix D. !> |
| [in] | E | !> E is DOUBLE PRECISION array, dimension (N) !> JOBT = 'T': The N-1 offdiagonal elements of the matrix T. !> JOBT = 'L': The N-1 offdiagonal elements of the matrix L. !> |
| [in] | PIVMIN | !> PIVMIN is DOUBLE PRECISION !> The minimum pivot in the Sturm sequence for T. !> |
| [out] | EIGCNT | !> EIGCNT is INTEGER !> The number of eigenvalues of the symmetric tridiagonal matrix T !> that are in the interval (VL,VU] !> |
| [out] | LCNT | !> LCNT is INTEGER !> |
| [out] | RCNT | !> RCNT is INTEGER !> The left and right negcounts of the interval. !> |
| [out] | INFO | !> INFO is INTEGER !> |
Definition at line 133 of file dlarrc.f.