LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
crqt02.f
Go to the documentation of this file.
1 *> \brief \b CRQT02
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
12 * RWORK, RESULT )
13 *
14 * .. Scalar Arguments ..
15 * INTEGER K, LDA, LWORK, M, N
16 * ..
17 * .. Array Arguments ..
18 * REAL RESULT( * ), RWORK( * )
19 * COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
20 * $ R( LDA, * ), TAU( * ), WORK( LWORK )
21 * ..
22 *
23 *
24 *> \par Purpose:
25 * =============
26 *>
27 *> \verbatim
28 *>
29 *> CRQT02 tests CUNGRQ, which generates an m-by-n matrix Q with
30 *> orthonornmal rows that is defined as the product of k elementary
31 *> reflectors.
32 *>
33 *> Given the RQ factorization of an m-by-n matrix A, CRQT02 generates
34 *> the orthogonal matrix Q defined by the factorization of the last k
35 *> rows of A; it compares R(m-k+1:m,n-m+1:n) with
36 *> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
37 *> orthonormal.
38 *> \endverbatim
39 *
40 * Arguments:
41 * ==========
42 *
43 *> \param[in] M
44 *> \verbatim
45 *> M is INTEGER
46 *> The number of rows of the matrix Q to be generated. M >= 0.
47 *> \endverbatim
48 *>
49 *> \param[in] N
50 *> \verbatim
51 *> N is INTEGER
52 *> The number of columns of the matrix Q to be generated.
53 *> N >= M >= 0.
54 *> \endverbatim
55 *>
56 *> \param[in] K
57 *> \verbatim
58 *> K is INTEGER
59 *> The number of elementary reflectors whose product defines the
60 *> matrix Q. M >= K >= 0.
61 *> \endverbatim
62 *>
63 *> \param[in] A
64 *> \verbatim
65 *> A is COMPLEX array, dimension (LDA,N)
66 *> The m-by-n matrix A which was factorized by CRQT01.
67 *> \endverbatim
68 *>
69 *> \param[in] AF
70 *> \verbatim
71 *> AF is COMPLEX array, dimension (LDA,N)
72 *> Details of the RQ factorization of A, as returned by CGERQF.
73 *> See CGERQF for further details.
74 *> \endverbatim
75 *>
76 *> \param[out] Q
77 *> \verbatim
78 *> Q is COMPLEX array, dimension (LDA,N)
79 *> \endverbatim
80 *>
81 *> \param[out] R
82 *> \verbatim
83 *> R is COMPLEX array, dimension (LDA,M)
84 *> \endverbatim
85 *>
86 *> \param[in] LDA
87 *> \verbatim
88 *> LDA is INTEGER
89 *> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
90 *> \endverbatim
91 *>
92 *> \param[in] TAU
93 *> \verbatim
94 *> TAU is COMPLEX array, dimension (M)
95 *> The scalar factors of the elementary reflectors corresponding
96 *> to the RQ factorization in AF.
97 *> \endverbatim
98 *>
99 *> \param[out] WORK
100 *> \verbatim
101 *> WORK is COMPLEX array, dimension (LWORK)
102 *> \endverbatim
103 *>
104 *> \param[in] LWORK
105 *> \verbatim
106 *> LWORK is INTEGER
107 *> The dimension of the array WORK.
108 *> \endverbatim
109 *>
110 *> \param[out] RWORK
111 *> \verbatim
112 *> RWORK is REAL array, dimension (M)
113 *> \endverbatim
114 *>
115 *> \param[out] RESULT
116 *> \verbatim
117 *> RESULT is REAL array, dimension (2)
118 *> The test ratios:
119 *> RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
120 *> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
121 *> \endverbatim
122 *
123 * Authors:
124 * ========
125 *
126 *> \author Univ. of Tennessee
127 *> \author Univ. of California Berkeley
128 *> \author Univ. of Colorado Denver
129 *> \author NAG Ltd.
130 *
131 *> \ingroup complex_lin
132 *
133 * =====================================================================
134  SUBROUTINE crqt02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
135  $ RWORK, RESULT )
136 *
137 * -- LAPACK test routine --
138 * -- LAPACK is a software package provided by Univ. of Tennessee, --
139 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
140 *
141 * .. Scalar Arguments ..
142  INTEGER K, LDA, LWORK, M, N
143 * ..
144 * .. Array Arguments ..
145  REAL RESULT( * ), RWORK( * )
146  COMPLEX A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
147  $ r( lda, * ), tau( * ), work( lwork )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  REAL ZERO, ONE
154  parameter( zero = 0.0e+0, one = 1.0e+0 )
155  COMPLEX ROGUE
156  parameter( rogue = ( -1.0e+10, -1.0e+10 ) )
157 * ..
158 * .. Local Scalars ..
159  INTEGER INFO
160  REAL ANORM, EPS, RESID
161 * ..
162 * .. External Functions ..
163  REAL CLANGE, CLANSY, SLAMCH
164  EXTERNAL clange, clansy, slamch
165 * ..
166 * .. External Subroutines ..
167  EXTERNAL cgemm, cherk, clacpy, claset, cungrq
168 * ..
169 * .. Intrinsic Functions ..
170  INTRINSIC cmplx, max, real
171 * ..
172 * .. Scalars in Common ..
173  CHARACTER*32 SRNAMT
174 * ..
175 * .. Common blocks ..
176  COMMON / srnamc / srnamt
177 * ..
178 * .. Executable Statements ..
179 *
180 * Quick return if possible
181 *
182  IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) THEN
183  result( 1 ) = zero
184  result( 2 ) = zero
185  RETURN
186  END IF
187 *
188  eps = slamch( 'Epsilon' )
189 *
190 * Copy the last k rows of the factorization to the array Q
191 *
192  CALL claset( 'Full', m, n, rogue, rogue, q, lda )
193  IF( k.LT.n )
194  $ CALL clacpy( 'Full', k, n-k, af( m-k+1, 1 ), lda,
195  $ q( m-k+1, 1 ), lda )
196  IF( k.GT.1 )
197  $ CALL clacpy( 'Lower', k-1, k-1, af( m-k+2, n-k+1 ), lda,
198  $ q( m-k+2, n-k+1 ), lda )
199 *
200 * Generate the last n rows of the matrix Q
201 *
202  srnamt = 'CUNGRQ'
203  CALL cungrq( m, n, k, q, lda, tau( m-k+1 ), work, lwork, info )
204 *
205 * Copy R(m-k+1:m,n-m+1:n)
206 *
207  CALL claset( 'Full', k, m, cmplx( zero ), cmplx( zero ),
208  $ r( m-k+1, n-m+1 ), lda )
209  CALL clacpy( 'Upper', k, k, af( m-k+1, n-k+1 ), lda,
210  $ r( m-k+1, n-k+1 ), lda )
211 *
212 * Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
213 *
214  CALL cgemm( 'No transpose', 'Conjugate transpose', k, m, n,
215  $ cmplx( -one ), a( m-k+1, 1 ), lda, q, lda,
216  $ cmplx( one ), r( m-k+1, n-m+1 ), lda )
217 *
218 * Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
219 *
220  anorm = clange( '1', k, n, a( m-k+1, 1 ), lda, rwork )
221  resid = clange( '1', k, m, r( m-k+1, n-m+1 ), lda, rwork )
222  IF( anorm.GT.zero ) THEN
223  result( 1 ) = ( ( resid / real( max( 1, n ) ) ) / anorm ) / eps
224  ELSE
225  result( 1 ) = zero
226  END IF
227 *
228 * Compute I - Q*Q'
229 *
230  CALL claset( 'Full', m, m, cmplx( zero ), cmplx( one ), r, lda )
231  CALL cherk( 'Upper', 'No transpose', m, n, -one, q, lda, one, r,
232  $ lda )
233 *
234 * Compute norm( I - Q*Q' ) / ( N * EPS ) .
235 *
236  resid = clansy( '1', 'Upper', m, r, lda, rwork )
237 *
238  result( 2 ) = ( resid / real( max( 1, n ) ) ) / eps
239 *
240  RETURN
241 *
242 * End of CRQT02
243 *
244  END
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine cherk(UPLO, TRANS, N, K, ALPHA, A, LDA, BETA, C, LDC)
CHERK
Definition: cherk.f:173
subroutine crqt02(M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK, RWORK, RESULT)
CRQT02
Definition: crqt02.f:136
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine cungrq(M, N, K, A, LDA, TAU, WORK, LWORK, INFO)
CUNGRQ
Definition: cungrq.f:128