![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlarrr | ( | integer | n, |
double precision, dimension( * ) | d, | ||
double precision, dimension( * ) | e, | ||
integer | info ) |
DLARRR performs tests to decide whether the symmetric tridiagonal matrix T warrants expensive computations which guarantee high relative accuracy in the eigenvalues.
Download DLARRR + dependencies [TGZ] [ZIP] [TXT]
!> !> Perform tests to decide whether the symmetric tridiagonal matrix T !> warrants expensive computations which guarantee high relative accuracy !> in the eigenvalues. !>
[in] | N | !> N is INTEGER !> The order of the matrix. N > 0. !> |
[in] | D | !> D is DOUBLE PRECISION array, dimension (N) !> The N diagonal elements of the tridiagonal matrix T. !> |
[in,out] | E | !> E is DOUBLE PRECISION array, dimension (N) !> On entry, the first (N-1) entries contain the subdiagonal !> elements of the tridiagonal matrix T; E(N) is set to ZERO. !> |
[out] | INFO | !> INFO is INTEGER !> INFO = 0(default) : the matrix warrants computations preserving !> relative accuracy. !> INFO = 1 : the matrix warrants computations guaranteeing !> only absolute accuracy. !> |
Definition at line 91 of file dlarrr.f.