LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssbev_2stage()

subroutine ssbev_2stage ( character jobz,
character uplo,
integer n,
integer kd,
real, dimension( ldab, * ) ab,
integer ldab,
real, dimension( * ) w,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer lwork,
integer info )

SSBEV_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices

Download SSBEV_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSBEV_2STAGE computes all the eigenvalues and, optionally, eigenvectors of
!> a real symmetric band matrix A using the 2stage technique for
!> the reduction to tridiagonal.
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!>                  Not available in this release.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]KD
!>          KD is INTEGER
!>          The number of superdiagonals of the matrix A if UPLO = 'U',
!>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
!> 
[in,out]AB
!>          AB is REAL array, dimension (LDAB, N)
!>          On entry, the upper or lower triangle of the symmetric band
!>          matrix A, stored in the first KD+1 rows of the array.  The
!>          j-th column of A is stored in the j-th column of the array AB
!>          as follows:
!>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
!>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
!>
!>          On exit, AB is overwritten by values generated during the
!>          reduction to tridiagonal form.  If UPLO = 'U', the first
!>          superdiagonal and the diagonal of the tridiagonal matrix T
!>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
!>          the diagonal and first subdiagonal of T are returned in the
!>          first two rows of AB.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDAB >= KD + 1.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
!>          eigenvectors of the matrix A, with the i-th column of Z
!>          holding the eigenvector associated with W(i).
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension LWORK
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK. LWORK >= 1, when N <= 1;
!>          otherwise
!>          If JOBZ = 'N' and N > 1, LWORK must be queried.
!>                                   LWORK = MAX(1, dimension) where
!>                                   dimension = (2KD+1)*N + KD*NTHREADS + N
!>                                   where KD is the size of the band.
!>                                   NTHREADS is the number of threads used when
!>                                   openMP compilation is enabled, otherwise =1.
!>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, the algorithm failed to converge; i
!>                off-diagonal elements of an intermediate tridiagonal
!>                form did not converge to zero.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  All details about the 2stage techniques are available in:
!>
!>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
!>  Parallel reduction to condensed forms for symmetric eigenvalue problems
!>  using aggregated fine-grained and memory-aware kernels. In Proceedings
!>  of 2011 International Conference for High Performance Computing,
!>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
!>  Article 8 , 11 pages.
!>  http://doi.acm.org/10.1145/2063384.2063394
!>
!>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
!>  An improved parallel singular value algorithm and its implementation
!>  for multicore hardware, In Proceedings of 2013 International Conference
!>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
!>  Denver, Colorado, USA, 2013.
!>  Article 90, 12 pages.
!>  http://doi.acm.org/10.1145/2503210.2503292
!>
!>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
!>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
!>  calculations based on fine-grained memory aware tasks.
!>  International Journal of High Performance Computing Applications.
!>  Volume 28 Issue 2, Pages 196-209, May 2014.
!>  http://hpc.sagepub.com/content/28/2/196
!>
!> 

Definition at line 200 of file ssbev_2stage.f.

203*
204 IMPLICIT NONE
205*
206* -- LAPACK driver routine --
207* -- LAPACK is a software package provided by Univ. of Tennessee, --
208* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209*
210* .. Scalar Arguments ..
211 CHARACTER JOBZ, UPLO
212 INTEGER INFO, KD, LDAB, LDZ, N, LWORK
213* ..
214* .. Array Arguments ..
215 REAL AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
216* ..
217*
218* =====================================================================
219*
220* .. Parameters ..
221 REAL ZERO, ONE
222 parameter( zero = 0.0e0, one = 1.0e0 )
223* ..
224* .. Local Scalars ..
225 LOGICAL LOWER, WANTZ, LQUERY
226 INTEGER IINFO, IMAX, INDE, INDWRK, ISCALE,
227 $ LLWORK, LWMIN, LHTRD, LWTRD, IB, INDHOUS
228 REAL ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
229 $ SMLNUM
230* ..
231* .. External Functions ..
232 LOGICAL LSAME
233 INTEGER ILAENV2STAGE
234 REAL SLAMCH, SLANSB, SROUNDUP_LWORK
235 EXTERNAL lsame, slamch, slansb, ilaenv2stage,
237* ..
238* .. External Subroutines ..
239 EXTERNAL slascl, sscal, ssteqr, ssterf,
240 $ xerbla,
242* ..
243* .. Intrinsic Functions ..
244 INTRINSIC sqrt
245* ..
246* .. Executable Statements ..
247*
248* Test the input parameters.
249*
250 wantz = lsame( jobz, 'V' )
251 lower = lsame( uplo, 'L' )
252 lquery = ( lwork.EQ.-1 )
253*
254 info = 0
255 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
256 info = -1
257 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
258 info = -2
259 ELSE IF( n.LT.0 ) THEN
260 info = -3
261 ELSE IF( kd.LT.0 ) THEN
262 info = -4
263 ELSE IF( ldab.LT.kd+1 ) THEN
264 info = -6
265 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
266 info = -9
267 END IF
268*
269 IF( info.EQ.0 ) THEN
270 IF( n.LE.1 ) THEN
271 lwmin = 1
272 work( 1 ) = sroundup_lwork(lwmin)
273 ELSE
274 ib = ilaenv2stage( 2, 'SSYTRD_SB2ST', jobz,
275 $ n, kd, -1, -1 )
276 lhtrd = ilaenv2stage( 3, 'SSYTRD_SB2ST', jobz,
277 $ n, kd, ib, -1 )
278 lwtrd = ilaenv2stage( 4, 'SSYTRD_SB2ST', jobz,
279 $ n, kd, ib, -1 )
280 lwmin = n + lhtrd + lwtrd
281 work( 1 ) = sroundup_lwork(lwmin)
282 ENDIF
283*
284 IF( lwork.LT.lwmin .AND. .NOT.lquery )
285 $ info = -11
286 END IF
287*
288 IF( info.NE.0 ) THEN
289 CALL xerbla( 'SSBEV_2STAGE ', -info )
290 RETURN
291 ELSE IF( lquery ) THEN
292 RETURN
293 END IF
294*
295* Quick return if possible
296*
297 IF( n.EQ.0 )
298 $ RETURN
299*
300 IF( n.EQ.1 ) THEN
301 IF( lower ) THEN
302 w( 1 ) = ab( 1, 1 )
303 ELSE
304 w( 1 ) = ab( kd+1, 1 )
305 END IF
306 IF( wantz )
307 $ z( 1, 1 ) = one
308 RETURN
309 END IF
310*
311* Get machine constants.
312*
313 safmin = slamch( 'Safe minimum' )
314 eps = slamch( 'Precision' )
315 smlnum = safmin / eps
316 bignum = one / smlnum
317 rmin = sqrt( smlnum )
318 rmax = sqrt( bignum )
319*
320* Scale matrix to allowable range, if necessary.
321*
322 anrm = slansb( 'M', uplo, n, kd, ab, ldab, work )
323 iscale = 0
324 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
325 iscale = 1
326 sigma = rmin / anrm
327 ELSE IF( anrm.GT.rmax ) THEN
328 iscale = 1
329 sigma = rmax / anrm
330 END IF
331 IF( iscale.EQ.1 ) THEN
332 IF( lower ) THEN
333 CALL slascl( 'B', kd, kd, one, sigma, n, n, ab, ldab,
334 $ info )
335 ELSE
336 CALL slascl( 'Q', kd, kd, one, sigma, n, n, ab, ldab,
337 $ info )
338 END IF
339 END IF
340*
341* Call SSYTRD_SB2ST to reduce symmetric band matrix to tridiagonal form.
342*
343 inde = 1
344 indhous = inde + n
345 indwrk = indhous + lhtrd
346 llwork = lwork - indwrk + 1
347*
348 CALL ssytrd_sb2st( "N", jobz, uplo, n, kd, ab, ldab, w,
349 $ work( inde ), work( indhous ), lhtrd,
350 $ work( indwrk ), llwork, iinfo )
351*
352* For eigenvalues only, call SSTERF. For eigenvectors, call SSTEQR.
353*
354 IF( .NOT.wantz ) THEN
355 CALL ssterf( n, w, work( inde ), info )
356 ELSE
357 CALL ssteqr( jobz, n, w, work( inde ), z, ldz,
358 $ work( indwrk ),
359 $ info )
360 END IF
361*
362* If matrix was scaled, then rescale eigenvalues appropriately.
363*
364 IF( iscale.EQ.1 ) THEN
365 IF( info.EQ.0 ) THEN
366 imax = n
367 ELSE
368 imax = info - 1
369 END IF
370 CALL sscal( imax, one / sigma, w, 1 )
371 END IF
372*
373* Set WORK(1) to optimal workspace size.
374*
375 work( 1 ) = sroundup_lwork(lwmin)
376*
377 RETURN
378*
379* End of SSBEV_2STAGE
380*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssytrd_sb2st(stage1, vect, uplo, n, kd, ab, ldab, d, e, hous, lhous, work, lwork, info)
SSYTRD_SB2ST reduces a real symmetric band matrix A to real symmetric tridiagonal form T
integer function ilaenv2stage(ispec, name, opts, n1, n2, n3, n4)
ILAENV2STAGE
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slansb(norm, uplo, n, k, ab, ldab, work)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slansb.f:127
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:142
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine ssteqr(compz, n, d, e, z, ldz, work, info)
SSTEQR
Definition ssteqr.f:129
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
Here is the call graph for this function:
Here is the caller graph for this function: