LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cckgsv()

subroutine cckgsv ( integer  NM,
integer, dimension( * )  MVAL,
integer, dimension( * )  PVAL,
integer, dimension( * )  NVAL,
integer  NMATS,
integer, dimension( 4 )  ISEED,
real  THRESH,
integer  NMAX,
complex, dimension( * )  A,
complex, dimension( * )  AF,
complex, dimension( * )  B,
complex, dimension( * )  BF,
complex, dimension( * )  U,
complex, dimension( * )  V,
complex, dimension( * )  Q,
real, dimension( * )  ALPHA,
real, dimension( * )  BETA,
complex, dimension( * )  R,
integer, dimension( * )  IWORK,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer  NIN,
integer  NOUT,
integer  INFO 
)

CCKGSV

Purpose:
 CCKGSV tests CGGSVD:
        the GSVD for M-by-N matrix A and P-by-N matrix B.
Parameters
[in]NM
          NM is INTEGER
          The number of values of M contained in the vector MVAL.
[in]MVAL
          MVAL is INTEGER array, dimension (NM)
          The values of the matrix row dimension M.
[in]PVAL
          PVAL is INTEGER array, dimension (NP)
          The values of the matrix row dimension P.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix column dimension N.
[in]NMATS
          NMATS is INTEGER
          The number of matrix types to be tested for each combination
          of matrix dimensions.  If NMATS >= NTYPES (the maximum
          number of matrix types), then all the different types are
          generated for testing.  If NMATS < NTYPES, another input line
          is read to get the numbers of the matrix types to be used.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry, the seed of the random number generator.  The array
          elements should be between 0 and 4095, otherwise they will be
          reduced mod 4096, and ISEED(4) must be odd.
          On exit, the next seed in the random number sequence after
          all the test matrices have been generated.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for M or N, used in dimensioning
          the work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AF
          AF is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NMAX)
[out]BF
          BF is COMPLEX array, dimension (NMAX*NMAX)
[out]U
          U is COMPLEX array, dimension (NMAX*NMAX)
[out]V
          V is COMPLEX array, dimension (NMAX*NMAX)
[out]Q
          Q is COMPLEX array, dimension (NMAX*NMAX)
[out]ALPHA
          ALPHA is REAL array, dimension (NMAX)
[out]BETA
          BETA is REAL array, dimension (NMAX)
[out]R
          R is COMPLEX array, dimension (NMAX*NMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*NMAX)
[out]RWORK
          RWORK is REAL array, dimension (NMAX)
[in]NIN
          NIN is INTEGER
          The unit number for input.
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
[out]INFO
          INFO is INTEGER
          = 0 :  successful exit
          > 0 :  If CLATMS returns an error code, the absolute value
                 of it is returned.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 195 of file cckgsv.f.

198 *
199 * -- LAPACK test routine --
200 * -- LAPACK is a software package provided by Univ. of Tennessee, --
201 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
202 *
203 * .. Scalar Arguments ..
204  INTEGER INFO, NIN, NM, NMATS, NMAX, NOUT
205  REAL THRESH
206 * ..
207 * .. Array Arguments ..
208  INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * ),
209  $ PVAL( * )
210  REAL ALPHA( * ), BETA( * ), RWORK( * )
211  COMPLEX A( * ), AF( * ), B( * ), BF( * ), Q( * ),
212  $ R( * ), U( * ), V( * ), WORK( * )
213 * ..
214 *
215 * =====================================================================
216 *
217 * .. Parameters ..
218  INTEGER NTESTS
219  parameter( ntests = 12 )
220  INTEGER NTYPES
221  parameter( ntypes = 8 )
222 * ..
223 * .. Local Scalars ..
224  LOGICAL FIRSTT
225  CHARACTER DISTA, DISTB, TYPE
226  CHARACTER*3 PATH
227  INTEGER I, IINFO, IM, IMAT, KLA, KLB, KUA, KUB, LDA,
228  $ LDB, LDQ, LDR, LDU, LDV, LWORK, M, MODEA,
229  $ MODEB, N, NFAIL, NRUN, NT, P, K, L
230  REAL ANORM, BNORM, CNDNMA, CNDNMB
231 * ..
232 * .. Local Arrays ..
233  LOGICAL DOTYPE( NTYPES )
234  REAL RESULT( NTESTS )
235 * ..
236 * .. External Subroutines ..
237  EXTERNAL alahdg, alareq, alasum, clatms, slatb9, cgsvts3
238 * ..
239 * .. Intrinsic Functions ..
240  INTRINSIC abs
241 * ..
242 * .. Executable Statements ..
243 *
244 * Initialize constants and the random number seed.
245 *
246  path( 1: 3 ) = 'GSV'
247  info = 0
248  nrun = 0
249  nfail = 0
250  firstt = .true.
251  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
252  lda = nmax
253  ldb = nmax
254  ldu = nmax
255  ldv = nmax
256  ldq = nmax
257  ldr = nmax
258  lwork = nmax*nmax
259 *
260 * Specific cases
261 *
262 * Test: https://github.com/Reference-LAPACK/lapack/issues/411#issue-608776973
263 *
264  m = 6
265  p = 6
266  n = 6
267  a(1:m*n) = cmplx(1.e0, 0.e0)
268  b(1:m*n) = cmplx(0.e0, 0.e0)
269  b(1+0*m) = cmplx(9.e19, 0.e0)
270  b(2+1*m) = cmplx(9.e18, 0.e0)
271  b(3+2*m) = cmplx(9.e17, 0.e0)
272  b(4+3*m) = cmplx(9.e16, 0.e0)
273  b(5+4*m) = cmplx(9.e15, 0.e0)
274  b(6+5*m) = cmplx(9.e14, 0.e0)
275  CALL cggsvd3('N','N','N', m, p, n, k, l, a, m, b, m,
276  $ alpha, beta, u, 1, v, 1, q, 1,
277  $ work, m*n, rwork, iwork, info)
278 *
279 * Print information there is a NAN in BETA
280  DO 40 i = 1, l
281  IF( beta(i).NE.beta(i) ) THEN
282  info = -i
283  EXIT
284  END IF
285  40 CONTINUE
286  IF( info.LT.0 ) THEN
287  IF( nfail.EQ.0 .AND. firstt ) THEN
288  firstt = .false.
289  CALL alahdg( nout, path )
290  END IF
291  WRITE( nout, fmt = 9997 ) -info
292  nfail = nfail + 1
293  END IF
294  nrun = nrun + 1
295  info = 0
296 *
297 * Do for each value of M in MVAL.
298 *
299  DO 30 im = 1, nm
300  m = mval( im )
301  p = pval( im )
302  n = nval( im )
303 *
304  DO 20 imat = 1, ntypes
305 *
306 * Do the tests only if DOTYPE( IMAT ) is true.
307 *
308  IF( .NOT.dotype( imat ) )
309  $ GO TO 20
310 *
311 * Set up parameters with SLATB9 and generate test
312 * matrices A and B with CLATMS.
313 *
314  CALL slatb9( path, imat, m, p, n, TYPE, KLA, KUA, KLB, KUB,
315  $ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
316  $ DISTA, DISTB )
317 *
318 * Generate M by N matrix A
319 *
320  CALL clatms( m, n, dista, iseed, TYPE, RWORK, MODEA, CNDNMA,
321  $ ANORM, KLA, KUA, 'No packing', A, LDA, WORK,
322  $ IINFO )
323  IF( iinfo.NE.0 ) THEN
324  WRITE( nout, fmt = 9999 )iinfo
325  info = abs( iinfo )
326  GO TO 20
327  END IF
328 *
329 * Generate P by N matrix B
330 *
331  CALL clatms( p, n, distb, iseed, TYPE, RWORK, MODEB, CNDNMB,
332  $ BNORM, KLB, KUB, 'No packing', B, LDB, WORK,
333  $ IINFO )
334  IF( iinfo.NE.0 ) THEN
335  WRITE( nout, fmt = 9999 )iinfo
336  info = abs( iinfo )
337  GO TO 20
338  END IF
339 *
340  nt = 6
341 *
342  CALL cgsvts3( m, p, n, a, af, lda, b, bf, ldb, u, ldu, v,
343  $ ldv, q, ldq, alpha, beta, r, ldr, iwork, work,
344  $ lwork, rwork, result )
345 *
346 * Print information about the tests that did not
347 * pass the threshold.
348 *
349  DO 10 i = 1, nt
350  IF( result( i ).GE.thresh ) THEN
351  IF( nfail.EQ.0 .AND. firstt ) THEN
352  firstt = .false.
353  CALL alahdg( nout, path )
354  END IF
355  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
356  $ result( i )
357  nfail = nfail + 1
358  END IF
359  10 CONTINUE
360  nrun = nrun + nt
361 *
362  20 CONTINUE
363  30 CONTINUE
364 *
365 * Print a summary of the results.
366 *
367  CALL alasum( path, nout, nfail, nrun, 0 )
368 *
369  9999 FORMAT( ' CLATMS in CCKGSV INFO = ', i5 )
370  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
371  $ ', test ', i2, ', ratio=', g13.6 )
372  9997 FORMAT( ' FOUND NaN in BETA(', i4,')' )
373  RETURN
374 *
375 * End of CCKGSV
376 *
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:90
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:62
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine cgsvts3(M, P, N, A, AF, LDA, B, BF, LDB, U, LDU, V, LDV, Q, LDQ, ALPHA, BETA, R, LDR, IWORK, WORK, LWORK, RWORK, RESULT)
CGSVTS3
Definition: cgsvts3.f:209
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine cggsvd3(JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA, B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q, LDQ, WORK, LWORK, RWORK, IWORK, INFO)
CGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices
Definition: cggsvd3.f:354
subroutine slatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
SLATB9
Definition: slatb9.f:170
Here is the call graph for this function:
Here is the caller graph for this function: