LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ zlatm6()

subroutine zlatm6 ( integer  TYPE,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( lda, * )  B,
complex*16, dimension( ldx, * )  X,
integer  LDX,
complex*16, dimension( ldy, * )  Y,
integer  LDY,
complex*16  ALPHA,
complex*16  BETA,
complex*16  WX,
complex*16  WY,
double precision, dimension( * )  S,
double precision, dimension( * )  DIF 
)

ZLATM6

Purpose:
 ZLATM6 generates test matrices for the generalized eigenvalue
 problem, their corresponding right and left eigenvector matrices,
 and also reciprocal condition numbers for all eigenvalues and
 the reciprocal condition numbers of eigenvectors corresponding to
 the 1th and 5th eigenvalues.

 Test Matrices
 =============

 Two kinds of test matrix pairs
          (A, B) = inverse(YH) * (Da, Db) * inverse(X)
 are used in the tests:

 Type 1:
    Da = 1+a   0    0    0    0    Db = 1   0   0   0   0
          0   2+a   0    0    0         0   1   0   0   0
          0    0   3+a   0    0         0   0   1   0   0
          0    0    0   4+a   0         0   0   0   1   0
          0    0    0    0   5+a ,      0   0   0   0   1
 and Type 2:
    Da = 1+i   0    0       0       0    Db = 1   0   0   0   0
          0   1-i   0       0       0         0   1   0   0   0
          0    0    1       0       0         0   0   1   0   0
          0    0    0 (1+a)+(1+b)i  0         0   0   0   1   0
          0    0    0       0 (1+a)-(1+b)i,   0   0   0   0   1 .

 In both cases the same inverse(YH) and inverse(X) are used to compute
 (A, B), giving the exact eigenvectors to (A,B) as (YH, X):

 YH:  =  1    0   -y    y   -y    X =  1   0  -x  -x   x
         0    1   -y    y   -y         0   1   x  -x  -x
         0    0    1    0    0         0   0   1   0   0
         0    0    0    1    0         0   0   0   1   0
         0    0    0    0    1,        0   0   0   0   1 , where

 a, b, x and y will have all values independently of each other.
Parameters
[in]TYPE
          TYPE is INTEGER
          Specifies the problem type (see further details).
[in]N
          N is INTEGER
          Size of the matrices A and B.
[out]A
          A is COMPLEX*16 array, dimension (LDA, N).
          On exit A N-by-N is initialized according to TYPE.
[in]LDA
          LDA is INTEGER
          The leading dimension of A and of B.
[out]B
          B is COMPLEX*16 array, dimension (LDA, N).
          On exit B N-by-N is initialized according to TYPE.
[out]X
          X is COMPLEX*16 array, dimension (LDX, N).
          On exit X is the N-by-N matrix of right eigenvectors.
[in]LDX
          LDX is INTEGER
          The leading dimension of X.
[out]Y
          Y is COMPLEX*16 array, dimension (LDY, N).
          On exit Y is the N-by-N matrix of left eigenvectors.
[in]LDY
          LDY is INTEGER
          The leading dimension of Y.
[in]ALPHA
          ALPHA is COMPLEX*16
[in]BETA
          BETA is COMPLEX*16
 \verbatim
          Weighting constants for matrix A.
[in]WX
          WX is COMPLEX*16
          Constant for right eigenvector matrix.
[in]WY
          WY is COMPLEX*16
          Constant for left eigenvector matrix.
[out]S
          S is DOUBLE PRECISION array, dimension (N)
          S(i) is the reciprocal condition number for eigenvalue i.
[out]DIF
          DIF is DOUBLE PRECISION array, dimension (N)
          DIF(i) is the reciprocal condition number for eigenvector i.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 172 of file zlatm6.f.

174 *
175 * -- LAPACK computational routine --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 *
179 * .. Scalar Arguments ..
180  INTEGER LDA, LDX, LDY, N, TYPE
181  COMPLEX*16 ALPHA, BETA, WX, WY
182 * ..
183 * .. Array Arguments ..
184  DOUBLE PRECISION DIF( * ), S( * )
185  COMPLEX*16 A( LDA, * ), B( LDA, * ), X( LDX, * ),
186  $ Y( LDY, * )
187 * ..
188 *
189 * =====================================================================
190 *
191 * .. Parameters ..
192  DOUBLE PRECISION RONE, TWO, THREE
193  parameter( rone = 1.0d+0, two = 2.0d+0, three = 3.0d+0 )
194  COMPLEX*16 ZERO, ONE
195  parameter( zero = ( 0.0d+0, 0.0d+0 ),
196  $ one = ( 1.0d+0, 0.0d+0 ) )
197 * ..
198 * .. Local Scalars ..
199  INTEGER I, INFO, J
200 * ..
201 * .. Local Arrays ..
202  DOUBLE PRECISION RWORK( 50 )
203  COMPLEX*16 WORK( 26 ), Z( 8, 8 )
204 * ..
205 * .. Intrinsic Functions ..
206  INTRINSIC cdabs, dble, dcmplx, dconjg, sqrt
207 * ..
208 * .. External Subroutines ..
209  EXTERNAL zgesvd, zlacpy, zlakf2
210 * ..
211 * .. Executable Statements ..
212 *
213 * Generate test problem ...
214 * (Da, Db) ...
215 *
216  DO 20 i = 1, n
217  DO 10 j = 1, n
218 *
219  IF( i.EQ.j ) THEN
220  a( i, i ) = dcmplx( i ) + alpha
221  b( i, i ) = one
222  ELSE
223  a( i, j ) = zero
224  b( i, j ) = zero
225  END IF
226 *
227  10 CONTINUE
228  20 CONTINUE
229  IF( type.EQ.2 ) THEN
230  a( 1, 1 ) = dcmplx( rone, rone )
231  a( 2, 2 ) = dconjg( a( 1, 1 ) )
232  a( 3, 3 ) = one
233  a( 4, 4 ) = dcmplx( dble( one+alpha ), dble( one+beta ) )
234  a( 5, 5 ) = dconjg( a( 4, 4 ) )
235  END IF
236 *
237 * Form X and Y
238 *
239  CALL zlacpy( 'F', n, n, b, lda, y, ldy )
240  y( 3, 1 ) = -dconjg( wy )
241  y( 4, 1 ) = dconjg( wy )
242  y( 5, 1 ) = -dconjg( wy )
243  y( 3, 2 ) = -dconjg( wy )
244  y( 4, 2 ) = dconjg( wy )
245  y( 5, 2 ) = -dconjg( wy )
246 *
247  CALL zlacpy( 'F', n, n, b, lda, x, ldx )
248  x( 1, 3 ) = -wx
249  x( 1, 4 ) = -wx
250  x( 1, 5 ) = wx
251  x( 2, 3 ) = wx
252  x( 2, 4 ) = -wx
253  x( 2, 5 ) = -wx
254 *
255 * Form (A, B)
256 *
257  b( 1, 3 ) = wx + wy
258  b( 2, 3 ) = -wx + wy
259  b( 1, 4 ) = wx - wy
260  b( 2, 4 ) = wx - wy
261  b( 1, 5 ) = -wx + wy
262  b( 2, 5 ) = wx + wy
263  a( 1, 3 ) = wx*a( 1, 1 ) + wy*a( 3, 3 )
264  a( 2, 3 ) = -wx*a( 2, 2 ) + wy*a( 3, 3 )
265  a( 1, 4 ) = wx*a( 1, 1 ) - wy*a( 4, 4 )
266  a( 2, 4 ) = wx*a( 2, 2 ) - wy*a( 4, 4 )
267  a( 1, 5 ) = -wx*a( 1, 1 ) + wy*a( 5, 5 )
268  a( 2, 5 ) = wx*a( 2, 2 ) + wy*a( 5, 5 )
269 *
270 * Compute condition numbers
271 *
272  s( 1 ) = rone / sqrt( ( rone+three*cdabs( wy )*cdabs( wy ) ) /
273  $ ( rone+cdabs( a( 1, 1 ) )*cdabs( a( 1, 1 ) ) ) )
274  s( 2 ) = rone / sqrt( ( rone+three*cdabs( wy )*cdabs( wy ) ) /
275  $ ( rone+cdabs( a( 2, 2 ) )*cdabs( a( 2, 2 ) ) ) )
276  s( 3 ) = rone / sqrt( ( rone+two*cdabs( wx )*cdabs( wx ) ) /
277  $ ( rone+cdabs( a( 3, 3 ) )*cdabs( a( 3, 3 ) ) ) )
278  s( 4 ) = rone / sqrt( ( rone+two*cdabs( wx )*cdabs( wx ) ) /
279  $ ( rone+cdabs( a( 4, 4 ) )*cdabs( a( 4, 4 ) ) ) )
280  s( 5 ) = rone / sqrt( ( rone+two*cdabs( wx )*cdabs( wx ) ) /
281  $ ( rone+cdabs( a( 5, 5 ) )*cdabs( a( 5, 5 ) ) ) )
282 *
283  CALL zlakf2( 1, 4, a, lda, a( 2, 2 ), b, b( 2, 2 ), z, 8 )
284  CALL zgesvd( 'N', 'N', 8, 8, z, 8, rwork, work, 1, work( 2 ), 1,
285  $ work( 3 ), 24, rwork( 9 ), info )
286  dif( 1 ) = rwork( 8 )
287 *
288  CALL zlakf2( 4, 1, a, lda, a( 5, 5 ), b, b( 5, 5 ), z, 8 )
289  CALL zgesvd( 'N', 'N', 8, 8, z, 8, rwork, work, 1, work( 2 ), 1,
290  $ work( 3 ), 24, rwork( 9 ), info )
291  dif( 5 ) = rwork( 8 )
292 *
293  RETURN
294 *
295 * End of ZLATM6
296 *
subroutine zlakf2(M, N, A, LDA, B, D, E, Z, LDZ)
ZLAKF2
Definition: zlakf2.f:105
subroutine zgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
ZGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: zgesvd.f:214
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
Here is the call graph for this function:
Here is the caller graph for this function: