LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ zgerq2()

subroutine zgerq2 ( integer m,
integer n,
complex*16, dimension( lda, * ) a,
integer lda,
complex*16, dimension( * ) tau,
complex*16, dimension( * ) work,
integer info )

ZGERQ2 computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

Download ZGERQ2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> ZGERQ2 computes an RQ factorization of a complex m by n matrix A:
!> A = R * Q.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX*16 array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, if m <= n, the upper triangle of the subarray
!>          A(1:m,n-m+1:n) contains the m by m upper triangular matrix R;
!>          if m >= n, the elements on and above the (m-n)-th subdiagonal
!>          contain the m by n upper trapezoidal matrix R; the remaining
!>          elements, with the array TAU, represent the unitary matrix
!>          Q as a product of elementary reflectors (see Further
!>          Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is COMPLEX*16 array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is COMPLEX*16 array, dimension (M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(1)**H H(2)**H . . . H(k)**H, where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**H
!>
!>  where tau is a complex scalar, and v is a complex vector with
!>  v(n-k+i+1:n) = 0 and v(n-k+i) = 1; conjg(v(1:n-k+i-1)) is stored on
!>  exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).
!> 

Definition at line 120 of file zgerq2.f.

121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Parameters ..
136 COMPLEX*16 ONE
137 parameter( one = ( 1.0d+0, 0.0d+0 ) )
138* ..
139* .. Local Scalars ..
140 INTEGER I, K
141* ..
142* .. External Subroutines ..
143 EXTERNAL xerbla, zlacgv, zlarf1l, zlarfg
144* ..
145* .. Intrinsic Functions ..
146 INTRINSIC max, min
147* ..
148* .. Executable Statements ..
149*
150* Test the input arguments
151*
152 info = 0
153 IF( m.LT.0 ) THEN
154 info = -1
155 ELSE IF( n.LT.0 ) THEN
156 info = -2
157 ELSE IF( lda.LT.max( 1, m ) ) THEN
158 info = -4
159 END IF
160 IF( info.NE.0 ) THEN
161 CALL xerbla( 'ZGERQ2', -info )
162 RETURN
163 END IF
164*
165 k = min( m, n )
166*
167 DO 10 i = k, 1, -1
168*
169* Generate elementary reflector H(i) to annihilate
170* A(m-k+i,1:n-k+i-1)
171*
172 CALL zlacgv( n-k+i, a( m-k+i, 1 ), lda )
173 CALL zlarfg( n-k+i, a( m-k+i, n-k+i ), a( m-k+i, 1 ), lda,
174 $ tau( i ) )
175*
176* Apply H(i) to A(1:m-k+i-1,1:n-k+i) from the right
177*
178 CALL zlarf1l( 'Right', m-k+i-1, n-k+i, a( m-k+i, 1 ), lda,
179 $ tau( i ), a, lda, work )
180 CALL zlacgv( n-k+i-1, a( m-k+i, 1 ), lda )
181 10 CONTINUE
182 RETURN
183*
184* End of ZGERQ2
185*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zlacgv(n, x, incx)
ZLACGV conjugates a complex vector.
Definition zlacgv.f:72
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:104
subroutine zlarf1l(side, m, n, v, incv, tau, c, ldc, work)
ZLARF1L applies an elementary reflector to a general rectangular
Definition zlarf1l.f:130
Here is the call graph for this function:
Here is the caller graph for this function: