LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ slahd2()

subroutine slahd2 ( integer  IOUNIT,
character*3  PATH 
)

SLAHD2

Purpose:
 SLAHD2 prints header information for the different test paths.
Parameters
[in]IOUNIT
          IOUNIT is INTEGER.
          On entry, IOUNIT specifies the unit number to which the
          header information should be printed.
[in]PATH
          PATH is CHARACTER*3.
          On entry, PATH contains the name of the path for which the
          header information is to be printed.  Current paths are

             SHS, CHS:  Non-symmetric eigenproblem.
             SST, CST:  Symmetric eigenproblem.
             SSG, CSG:  Symmetric Generalized eigenproblem.
             SBD, CBD:  Singular Value Decomposition (SVD)
             SBB, CBB:  General Banded reduction to bidiagonal form

          These paths also are supplied in double precision (replace
          leading S by D and leading C by Z in path names).
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 64 of file slahd2.f.

65 *
66 * -- LAPACK test routine --
67 * -- LAPACK is a software package provided by Univ. of Tennessee, --
68 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
69 *
70 * .. Scalar Arguments ..
71  CHARACTER*3 PATH
72  INTEGER IOUNIT
73 * ..
74 *
75 * =====================================================================
76 *
77 * .. Local Scalars ..
78  LOGICAL CORZ, SORD
79  CHARACTER*2 C2
80  INTEGER J
81 * ..
82 * .. External Functions ..
83  LOGICAL LSAME, LSAMEN
84  EXTERNAL lsame, lsamen
85 * ..
86 * .. Executable Statements ..
87 *
88  IF( iounit.LE.0 )
89  $ RETURN
90  sord = lsame( path, 'S' ) .OR. lsame( path, 'D' )
91  corz = lsame( path, 'C' ) .OR. lsame( path, 'Z' )
92  IF( .NOT.sord .AND. .NOT.corz ) THEN
93  WRITE( iounit, fmt = 9999 )path
94  END IF
95  c2 = path( 2: 3 )
96 *
97  IF( lsamen( 2, c2, 'HS' ) ) THEN
98  IF( sord ) THEN
99 *
100 * Real Non-symmetric Eigenvalue Problem:
101 *
102  WRITE( iounit, fmt = 9998 )path
103 *
104 * Matrix types
105 *
106  WRITE( iounit, fmt = 9988 )
107  WRITE( iounit, fmt = 9987 )
108  WRITE( iounit, fmt = 9986 )'pairs ', 'pairs ', 'prs.',
109  $ 'prs.'
110  WRITE( iounit, fmt = 9985 )
111 *
112 * Tests performed
113 *
114  WRITE( iounit, fmt = 9984 )'orthogonal', '''=transpose',
115  $ ( '''', j = 1, 6 )
116 *
117  ELSE
118 *
119 * Complex Non-symmetric Eigenvalue Problem:
120 *
121  WRITE( iounit, fmt = 9997 )path
122 *
123 * Matrix types
124 *
125  WRITE( iounit, fmt = 9988 )
126  WRITE( iounit, fmt = 9987 )
127  WRITE( iounit, fmt = 9986 )'e.vals', 'e.vals', 'e.vs',
128  $ 'e.vs'
129  WRITE( iounit, fmt = 9985 )
130 *
131 * Tests performed
132 *
133  WRITE( iounit, fmt = 9984 )'unitary', '*=conj.transp.',
134  $ ( '*', j = 1, 6 )
135  END IF
136 *
137  ELSE IF( lsamen( 2, c2, 'ST' ) ) THEN
138 *
139  IF( sord ) THEN
140 *
141 * Real Symmetric Eigenvalue Problem:
142 *
143  WRITE( iounit, fmt = 9996 )path
144 *
145 * Matrix types
146 *
147  WRITE( iounit, fmt = 9983 )
148  WRITE( iounit, fmt = 9982 )
149  WRITE( iounit, fmt = 9981 )'Symmetric'
150 *
151 * Tests performed
152 *
153  WRITE( iounit, fmt = 9968 )
154 *
155  ELSE
156 *
157 * Complex Hermitian Eigenvalue Problem:
158 *
159  WRITE( iounit, fmt = 9995 )path
160 *
161 * Matrix types
162 *
163  WRITE( iounit, fmt = 9983 )
164  WRITE( iounit, fmt = 9982 )
165  WRITE( iounit, fmt = 9981 )'Hermitian'
166 *
167 * Tests performed
168 *
169  WRITE( iounit, fmt = 9967 )
170  END IF
171 *
172  ELSE IF( lsamen( 2, c2, 'SG' ) ) THEN
173 *
174  IF( sord ) THEN
175 *
176 * Real Symmetric Generalized Eigenvalue Problem:
177 *
178  WRITE( iounit, fmt = 9992 )path
179 *
180 * Matrix types
181 *
182  WRITE( iounit, fmt = 9980 )
183  WRITE( iounit, fmt = 9979 )
184  WRITE( iounit, fmt = 9978 )'Symmetric'
185 *
186 * Tests performed
187 *
188  WRITE( iounit, fmt = 9977 )
189  WRITE( iounit, fmt = 9976 )
190 *
191  ELSE
192 *
193 * Complex Hermitian Generalized Eigenvalue Problem:
194 *
195  WRITE( iounit, fmt = 9991 )path
196 *
197 * Matrix types
198 *
199  WRITE( iounit, fmt = 9980 )
200  WRITE( iounit, fmt = 9979 )
201  WRITE( iounit, fmt = 9978 )'Hermitian'
202 *
203 * Tests performed
204 *
205  WRITE( iounit, fmt = 9975 )
206  WRITE( iounit, fmt = 9974 )
207 *
208  END IF
209 *
210  ELSE IF( lsamen( 2, c2, 'BD' ) ) THEN
211 *
212  IF( sord ) THEN
213 *
214 * Real Singular Value Decomposition:
215 *
216  WRITE( iounit, fmt = 9994 )path
217 *
218 * Matrix types
219 *
220  WRITE( iounit, fmt = 9973 )
221 *
222 * Tests performed
223 *
224  WRITE( iounit, fmt = 9972 )'orthogonal'
225  WRITE( iounit, fmt = 9971 )
226  ELSE
227 *
228 * Complex Singular Value Decomposition:
229 *
230  WRITE( iounit, fmt = 9993 )path
231 *
232 * Matrix types
233 *
234  WRITE( iounit, fmt = 9973 )
235 *
236 * Tests performed
237 *
238  WRITE( iounit, fmt = 9972 )'unitary '
239  WRITE( iounit, fmt = 9971 )
240  END IF
241 *
242  ELSE IF( lsamen( 2, c2, 'BB' ) ) THEN
243 *
244  IF( sord ) THEN
245 *
246 * Real General Band reduction to bidiagonal form:
247 *
248  WRITE( iounit, fmt = 9990 )path
249 *
250 * Matrix types
251 *
252  WRITE( iounit, fmt = 9970 )
253 *
254 * Tests performed
255 *
256  WRITE( iounit, fmt = 9969 )'orthogonal'
257  ELSE
258 *
259 * Complex Band reduction to bidiagonal form:
260 *
261  WRITE( iounit, fmt = 9989 )path
262 *
263 * Matrix types
264 *
265  WRITE( iounit, fmt = 9970 )
266 *
267 * Tests performed
268 *
269  WRITE( iounit, fmt = 9969 )'unitary '
270  END IF
271 *
272  ELSE
273 *
274  WRITE( iounit, fmt = 9999 )path
275  RETURN
276  END IF
277 *
278  RETURN
279 *
280  9999 FORMAT( 1x, a3, ': no header available' )
281  9998 FORMAT( / 1x, a3, ' -- Real Non-symmetric eigenvalue problem' )
282  9997 FORMAT( / 1x, a3, ' -- Complex Non-symmetric eigenvalue problem' )
283  9996 FORMAT( / 1x, a3, ' -- Real Symmetric eigenvalue problem' )
284  9995 FORMAT( / 1x, a3, ' -- Complex Hermitian eigenvalue problem' )
285  9994 FORMAT( / 1x, a3, ' -- Real Singular Value Decomposition' )
286  9993 FORMAT( / 1x, a3, ' -- Complex Singular Value Decomposition' )
287  9992 FORMAT( / 1x, a3, ' -- Real Symmetric Generalized eigenvalue ',
288  $ 'problem' )
289  9991 FORMAT( / 1x, a3, ' -- Complex Hermitian Generalized eigenvalue ',
290  $ 'problem' )
291  9990 FORMAT( / 1x, a3, ' -- Real Band reduc. to bidiagonal form' )
292  9989 FORMAT( / 1x, a3, ' -- Complex Band reduc. to bidiagonal form' )
293 *
294  9988 FORMAT( ' Matrix types (see xCHKHS for details): ' )
295 *
296  9987 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
297  $ ' ', ' 5=Diagonal: geometr. spaced entries.',
298  $ / ' 2=Identity matrix. ', ' 6=Diagona',
299  $ 'l: clustered entries.', / ' 3=Transposed Jordan block. ',
300  $ ' ', ' 7=Diagonal: large, evenly spaced.', / ' ',
301  $ '4=Diagonal: evenly spaced entries. ', ' 8=Diagonal: s',
302  $ 'mall, evenly spaced.' )
303  9986 FORMAT( ' Dense, Non-Symmetric Matrices:', / ' 9=Well-cond., ev',
304  $ 'enly spaced eigenvals.', ' 14=Ill-cond., geomet. spaced e',
305  $ 'igenals.', / ' 10=Well-cond., geom. spaced eigenvals. ',
306  $ ' 15=Ill-conditioned, clustered e.vals.', / ' 11=Well-cond',
307  $ 'itioned, clustered e.vals. ', ' 16=Ill-cond., random comp',
308  $ 'lex ', a6, / ' 12=Well-cond., random complex ', a6, ' ',
309  $ ' 17=Ill-cond., large rand. complx ', a4, / ' 13=Ill-condi',
310  $ 'tioned, evenly spaced. ', ' 18=Ill-cond., small rand.',
311  $ ' complx ', a4 )
312  9985 FORMAT( ' 19=Matrix with random O(1) entries. ', ' 21=Matrix ',
313  $ 'with small random entries.', / ' 20=Matrix with large ran',
314  $ 'dom entries. ' )
315  9984 FORMAT( / ' Tests performed: ', '(H is Hessenberg, T is Schur,',
316  $ ' U and Z are ', a, ',', / 20x, a, ', W is a diagonal matr',
317  $ 'ix of eigenvalues,', / 20x, 'L and R are the left and rig',
318  $ 'ht eigenvector matrices)', / ' 1 = | A - U H U', a1, ' |',
319  $ ' / ( |A| n ulp ) ', ' 2 = | I - U U', a1, ' | / ',
320  $ '( n ulp )', / ' 3 = | H - Z T Z', a1, ' | / ( |H| n ulp ',
321  $ ') ', ' 4 = | I - Z Z', a1, ' | / ( n ulp )',
322  $ / ' 5 = | A - UZ T (UZ)', a1, ' | / ( |A| n ulp ) ',
323  $ ' 6 = | I - UZ (UZ)', a1, ' | / ( n ulp )', / ' 7 = | T(',
324  $ 'e.vects.) - T(no e.vects.) | / ( |T| ulp )', / ' 8 = | W',
325  $ '(e.vects.) - W(no e.vects.) | / ( |W| ulp )', / ' 9 = | ',
326  $ 'TR - RW | / ( |T| |R| ulp ) ', ' 10 = | LT - WL | / (',
327  $ ' |T| |L| ulp )', / ' 11= |HX - XW| / (|H| |X| ulp) (inv.',
328  $ 'it)', ' 12= |YH - WY| / (|H| |Y| ulp) (inv.it)' )
329 *
330 * Symmetric/Hermitian eigenproblem
331 *
332  9983 FORMAT( ' Matrix types (see xDRVST for details): ' )
333 *
334  9982 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
335  $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=',
336  $ 'Identity matrix. ', ' 6=Diagonal: lar',
337  $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri',
338  $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D',
339  $ 'iagonal: geometr. spaced entries.' )
340  9981 FORMAT( ' Dense ', a, ' Matrices:', / ' 8=Evenly spaced eigen',
341  $ 'vals. ', ' 12=Small, evenly spaced eigenvals.',
342  $ / ' 9=Geometrically spaced eigenvals. ', ' 13=Matrix ',
343  $ 'with random O(1) entries.', / ' 10=Clustered eigenvalues.',
344  $ ' ', ' 14=Matrix with large random entries.',
345  $ / ' 11=Large, evenly spaced eigenvals. ', ' 15=Matrix ',
346  $ 'with small random entries.' )
347 *
348 * Symmetric/Hermitian Generalized eigenproblem
349 *
350  9980 FORMAT( ' Matrix types (see xDRVSG for details): ' )
351 *
352  9979 FORMAT( / ' Special Matrices:', / ' 1=Zero matrix. ',
353  $ ' ', ' 5=Diagonal: clustered entries.', / ' 2=',
354  $ 'Identity matrix. ', ' 6=Diagonal: lar',
355  $ 'ge, evenly spaced.', / ' 3=Diagonal: evenly spaced entri',
356  $ 'es. ', ' 7=Diagonal: small, evenly spaced.', / ' 4=D',
357  $ 'iagonal: geometr. spaced entries.' )
358  9978 FORMAT( ' Dense or Banded ', a, ' Matrices: ',
359  $ / ' 8=Evenly spaced eigenvals. ',
360  $ ' 15=Matrix with small random entries.',
361  $ / ' 9=Geometrically spaced eigenvals. ',
362  $ ' 16=Evenly spaced eigenvals, KA=1, KB=1.',
363  $ / ' 10=Clustered eigenvalues. ',
364  $ ' 17=Evenly spaced eigenvals, KA=2, KB=1.',
365  $ / ' 11=Large, evenly spaced eigenvals. ',
366  $ ' 18=Evenly spaced eigenvals, KA=2, KB=2.',
367  $ / ' 12=Small, evenly spaced eigenvals. ',
368  $ ' 19=Evenly spaced eigenvals, KA=3, KB=1.',
369  $ / ' 13=Matrix with random O(1) entries. ',
370  $ ' 20=Evenly spaced eigenvals, KA=3, KB=2.',
371  $ / ' 14=Matrix with large random entries.',
372  $ ' 21=Evenly spaced eigenvals, KA=3, KB=3.' )
373  9977 FORMAT( / ' Tests performed: ',
374  $ / '( For each pair (A,B), where A is of the given type ',
375  $ / ' and B is a random well-conditioned matrix. D is ',
376  $ / ' diagonal, and Z is orthogonal. )',
377  $ / ' 1 = SSYGV, with ITYPE=1 and UPLO=''U'':',
378  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
379  $ / ' 2 = SSPGV, with ITYPE=1 and UPLO=''U'':',
380  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
381  $ / ' 3 = SSBGV, with ITYPE=1 and UPLO=''U'':',
382  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
383  $ / ' 4 = SSYGV, with ITYPE=1 and UPLO=''L'':',
384  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
385  $ / ' 5 = SSPGV, with ITYPE=1 and UPLO=''L'':',
386  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
387  $ / ' 6 = SSBGV, with ITYPE=1 and UPLO=''L'':',
388  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' )
389  9976 FORMAT( ' 7 = SSYGV, with ITYPE=2 and UPLO=''U'':',
390  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
391  $ / ' 8 = SSPGV, with ITYPE=2 and UPLO=''U'':',
392  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
393  $ / ' 9 = SSPGV, with ITYPE=2 and UPLO=''L'':',
394  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
395  $ / '10 = SSPGV, with ITYPE=2 and UPLO=''L'':',
396  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
397  $ / '11 = SSYGV, with ITYPE=3 and UPLO=''U'':',
398  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
399  $ / '12 = SSPGV, with ITYPE=3 and UPLO=''U'':',
400  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
401  $ / '13 = SSYGV, with ITYPE=3 and UPLO=''L'':',
402  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
403  $ / '14 = SSPGV, with ITYPE=3 and UPLO=''L'':',
404  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' )
405  9975 FORMAT( / ' Tests performed: ',
406  $ / '( For each pair (A,B), where A is of the given type ',
407  $ / ' and B is a random well-conditioned matrix. D is ',
408  $ / ' diagonal, and Z is unitary. )',
409  $ / ' 1 = CHEGV, with ITYPE=1 and UPLO=''U'':',
410  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
411  $ / ' 2 = CHPGV, with ITYPE=1 and UPLO=''U'':',
412  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
413  $ / ' 3 = CHBGV, with ITYPE=1 and UPLO=''U'':',
414  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
415  $ / ' 4 = CHEGV, with ITYPE=1 and UPLO=''L'':',
416  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
417  $ / ' 5 = CHPGV, with ITYPE=1 and UPLO=''L'':',
418  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ',
419  $ / ' 6 = CHBGV, with ITYPE=1 and UPLO=''L'':',
420  $ ' | A Z - B Z D | / ( |A| |Z| n ulp ) ' )
421  9974 FORMAT( ' 7 = CHEGV, with ITYPE=2 and UPLO=''U'':',
422  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
423  $ / ' 8 = CHPGV, with ITYPE=2 and UPLO=''U'':',
424  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
425  $ / ' 9 = CHPGV, with ITYPE=2 and UPLO=''L'':',
426  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
427  $ / '10 = CHPGV, with ITYPE=2 and UPLO=''L'':',
428  $ ' | A B Z - Z D | / ( |A| |Z| n ulp ) ',
429  $ / '11 = CHEGV, with ITYPE=3 and UPLO=''U'':',
430  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
431  $ / '12 = CHPGV, with ITYPE=3 and UPLO=''U'':',
432  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
433  $ / '13 = CHEGV, with ITYPE=3 and UPLO=''L'':',
434  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ',
435  $ / '14 = CHPGV, with ITYPE=3 and UPLO=''L'':',
436  $ ' | B A Z - Z D | / ( |A| |Z| n ulp ) ' )
437 *
438 * Singular Value Decomposition
439 *
440  9973 FORMAT( ' Matrix types (see xCHKBD for details):',
441  $ / ' Diagonal matrices:', / ' 1: Zero', 28x,
442  $ ' 5: Clustered entries', / ' 2: Identity', 24x,
443  $ ' 6: Large, evenly spaced entries',
444  $ / ' 3: Evenly spaced entries', 11x,
445  $ ' 7: Small, evenly spaced entries',
446  $ / ' 4: Geometrically spaced entries',
447  $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.',
448  $ 7x, '12: Small, evenly spaced sing vals',
449  $ / ' 9: Geometrically spaced sing vals ',
450  $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.',
451  $ 11x, '14: Random, scaled near overflow',
452  $ / ' 11: Large, evenly spaced sing vals ',
453  $ '15: Random, scaled near underflow' )
454 *
455  9972 FORMAT( / ' Test ratios: ',
456  $ '(B: bidiagonal, S: diagonal, Q, P, U, and V: ', a10, / 16x,
457  $ 'X: m x nrhs, Y = Q'' X, and Z = U'' Y)' )
458  9971 FORMAT( ' 1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )',
459  $ / ' 2: norm( I - Q'' Q ) / ( m ulp )',
460  $ / ' 3: norm( I - P'' P ) / ( n ulp )',
461  $ / ' 4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )',
462  $ / ' 5: norm( Y - U Z ) / ',
463  $ '( norm(Z) max(min(m,n),k) ulp )',
464  $ / ' 6: norm( I - U'' U ) / ( min(m,n) ulp )',
465  $ / ' 7: norm( I - V'' V ) / ( min(m,n) ulp )',
466  $ / ' 8: Test ordering of S (0 if nondecreasing, 1/ulp ',
467  $ ' otherwise)',
468  $ / ' 9: norm( S - S1 ) / ( norm(S) ulp ),',
469  $ ' where S1 is computed', / 43x,
470  $ ' without computing U and V''',
471  $ / ' 10: Sturm sequence test ',
472  $ '(0 if sing. vals of B within THRESH of S)',
473  $ / ' 11: norm( A - (QU) S (V'' P'') ) / ',
474  $ '( norm(A) max(m,n) ulp )',
475  $ / ' 12: norm( X - (QU) Z ) / ( |X| max(M,k) ulp )',
476  $ / ' 13: norm( I - (QU)''(QU) ) / ( M ulp )',
477  $ / ' 14: norm( I - (V'' P'') (P V) ) / ( N ulp )',
478  $ / ' 15: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )',
479  $ / ' 16: norm( I - U'' U ) / ( min(m,n) ulp )',
480  $ / ' 17: norm( I - V'' V ) / ( min(m,n) ulp )',
481  $ / ' 18: Test ordering of S (0 if nondecreasing, 1/ulp ',
482  $ ' otherwise)',
483  $ / ' 19: norm( S - S1 ) / ( norm(S) ulp ),',
484  $ ' where S1 is computed', / 43x,
485  $ ' without computing U and V''',
486  $ / ' 20: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )',
487  $ ' SBDSVX(V,A)',
488  $ / ' 21: norm( I - U'' U ) / ( min(m,n) ulp )',
489  $ / ' 22: norm( I - V'' V ) / ( min(m,n) ulp )',
490  $ / ' 23: Test ordering of S (0 if nondecreasing, 1/ulp ',
491  $ ' otherwise)',
492  $ / ' 24: norm( S - S1 ) / ( norm(S) ulp ),',
493  $ ' where S1 is computed', / 44x,
494  $ ' without computing U and V''',
495  $ / ' 25: norm( S - U'' B V ) / ( norm(B) n ulp )',
496  $ ' SBDSVX(V,I)',
497  $ / ' 26: norm( I - U'' U ) / ( min(m,n) ulp )',
498  $ / ' 27: norm( I - V'' V ) / ( min(m,n) ulp )',
499  $ / ' 28: Test ordering of S (0 if nondecreasing, 1/ulp ',
500  $ ' otherwise)',
501  $ / ' 29: norm( S - S1 ) / ( norm(S) ulp ),',
502  $ ' where S1 is computed', / 44x,
503  $ ' without computing U and V''',
504  $ / ' 30: norm( S - U'' B V ) / ( norm(B) n ulp )',
505  $ ' SBDSVX(V,V)',
506  $ / ' 31: norm( I - U'' U ) / ( min(m,n) ulp )',
507  $ / ' 32: norm( I - V'' V ) / ( min(m,n) ulp )',
508  $ / ' 33: Test ordering of S (0 if nondecreasing, 1/ulp ',
509  $ ' otherwise)',
510  $ / ' 34: norm( S - S1 ) / ( norm(S) ulp ),',
511  $ ' where S1 is computed', / 44x,
512  $ ' without computing U and V''' )
513 *
514 * Band reduction to bidiagonal form
515 *
516  9970 FORMAT( ' Matrix types (see xCHKBB for details):',
517  $ / ' Diagonal matrices:', / ' 1: Zero', 28x,
518  $ ' 5: Clustered entries', / ' 2: Identity', 24x,
519  $ ' 6: Large, evenly spaced entries',
520  $ / ' 3: Evenly spaced entries', 11x,
521  $ ' 7: Small, evenly spaced entries',
522  $ / ' 4: Geometrically spaced entries',
523  $ / ' General matrices:', / ' 8: Evenly spaced sing. vals.',
524  $ 7x, '12: Small, evenly spaced sing vals',
525  $ / ' 9: Geometrically spaced sing vals ',
526  $ '13: Random, O(1) entries', / ' 10: Clustered sing. vals.',
527  $ 11x, '14: Random, scaled near overflow',
528  $ / ' 11: Large, evenly spaced sing vals ',
529  $ '15: Random, scaled near underflow' )
530 *
531  9969 FORMAT( / ' Test ratios: ', '(B: upper bidiagonal, Q and P: ',
532  $ a10, / 16x, 'C: m x nrhs, PT = P'', Y = Q'' C)',
533  $ / ' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )',
534  $ / ' 2: norm( I - Q'' Q ) / ( m ulp )',
535  $ / ' 3: norm( I - PT PT'' ) / ( n ulp )',
536  $ / ' 4: norm( Y - Q'' C ) / ( norm(Y) max(m,nrhs) ulp )' )
537  9968 FORMAT( / ' Tests performed: See sdrvst.f' )
538  9967 FORMAT( / ' Tests performed: See cdrvst.f' )
539 *
540 * End of SLAHD2
541 *
logical function lsamen(N, CA, CB)
LSAMEN
Definition: lsamen.f:74
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
Here is the caller graph for this function: