LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ sget54()

subroutine sget54 ( integer  N,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( ldb, * )  B,
integer  LDB,
real, dimension( lds, * )  S,
integer  LDS,
real, dimension( ldt, * )  T,
integer  LDT,
real, dimension( ldu, * )  U,
integer  LDU,
real, dimension( ldv, * )  V,
integer  LDV,
real, dimension( * )  WORK,
real  RESULT 
)

SGET54

Purpose:
 SGET54 checks a generalized decomposition of the form

          A = U*S*V'  and B = U*T* V'

 where ' means transpose and U and V are orthogonal.

 Specifically,

  RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp )
Parameters
[in]N
          N is INTEGER
          The size of the matrix.  If it is zero, SGET54 does nothing.
          It must be at least zero.
[in]A
          A is REAL array, dimension (LDA, N)
          The original (unfactored) matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  It must be at least 1
          and at least N.
[in]B
          B is REAL array, dimension (LDB, N)
          The original (unfactored) matrix B.
[in]LDB
          LDB is INTEGER
          The leading dimension of B.  It must be at least 1
          and at least N.
[in]S
          S is REAL array, dimension (LDS, N)
          The factored matrix S.
[in]LDS
          LDS is INTEGER
          The leading dimension of S.  It must be at least 1
          and at least N.
[in]T
          T is REAL array, dimension (LDT, N)
          The factored matrix T.
[in]LDT
          LDT is INTEGER
          The leading dimension of T.  It must be at least 1
          and at least N.
[in]U
          U is REAL array, dimension (LDU, N)
          The orthogonal matrix on the left-hand side in the
          decomposition.
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  LDU must be at least N and
          at least 1.
[in]V
          V is REAL array, dimension (LDV, N)
          The orthogonal matrix on the left-hand side in the
          decomposition.
[in]LDV
          LDV is INTEGER
          The leading dimension of V.  LDV must be at least N and
          at least 1.
[out]WORK
          WORK is REAL array, dimension (3*N**2)
[out]RESULT
          RESULT is REAL
          The value RESULT, It is currently limited to 1/ulp, to
          avoid overflow. Errors are flagged by RESULT=10/ulp.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 154 of file sget54.f.

156 *
157 * -- LAPACK test routine --
158 * -- LAPACK is a software package provided by Univ. of Tennessee, --
159 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
160 *
161 * .. Scalar Arguments ..
162  INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N
163  REAL RESULT
164 * ..
165 * .. Array Arguments ..
166  REAL A( LDA, * ), B( LDB, * ), S( LDS, * ),
167  $ T( LDT, * ), U( LDU, * ), V( LDV, * ),
168  $ WORK( * )
169 * ..
170 *
171 * =====================================================================
172 *
173 * .. Parameters ..
174  REAL ZERO, ONE
175  parameter( zero = 0.0e+0, one = 1.0e+0 )
176 * ..
177 * .. Local Scalars ..
178  REAL ABNORM, ULP, UNFL, WNORM
179 * ..
180 * .. Local Arrays ..
181  REAL DUM( 1 )
182 * ..
183 * .. External Functions ..
184  REAL SLAMCH, SLANGE
185  EXTERNAL slamch, slange
186 * ..
187 * .. External Subroutines ..
188  EXTERNAL sgemm, slacpy
189 * ..
190 * .. Intrinsic Functions ..
191  INTRINSIC max, min, real
192 * ..
193 * .. Executable Statements ..
194 *
195  result = zero
196  IF( n.LE.0 )
197  $ RETURN
198 *
199 * Constants
200 *
201  unfl = slamch( 'Safe minimum' )
202  ulp = slamch( 'Epsilon' )*slamch( 'Base' )
203 *
204 * compute the norm of (A,B)
205 *
206  CALL slacpy( 'Full', n, n, a, lda, work, n )
207  CALL slacpy( 'Full', n, n, b, ldb, work( n*n+1 ), n )
208  abnorm = max( slange( '1', n, 2*n, work, n, dum ), unfl )
209 *
210 * Compute W1 = A - U*S*V', and put in the array WORK(1:N*N)
211 *
212  CALL slacpy( ' ', n, n, a, lda, work, n )
213  CALL sgemm( 'N', 'N', n, n, n, one, u, ldu, s, lds, zero,
214  $ work( n*n+1 ), n )
215 *
216  CALL sgemm( 'N', 'C', n, n, n, -one, work( n*n+1 ), n, v, ldv,
217  $ one, work, n )
218 *
219 * Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N)
220 *
221  CALL slacpy( ' ', n, n, b, ldb, work( n*n+1 ), n )
222  CALL sgemm( 'N', 'N', n, n, n, one, u, ldu, t, ldt, zero,
223  $ work( 2*n*n+1 ), n )
224 *
225  CALL sgemm( 'N', 'C', n, n, n, -one, work( 2*n*n+1 ), n, v, ldv,
226  $ one, work( n*n+1 ), n )
227 *
228 * Compute norm(W)/ ( ulp*norm((A,B)) )
229 *
230  wnorm = slange( '1', n, 2*n, work, n, dum )
231 *
232  IF( abnorm.GT.wnorm ) THEN
233  result = ( wnorm / abnorm ) / ( 2*n*ulp )
234  ELSE
235  IF( abnorm.LT.one ) THEN
236  result = ( min( wnorm, 2*n*abnorm ) / abnorm ) / ( 2*n*ulp )
237  ELSE
238  result = min( wnorm / abnorm, real( 2*n ) ) / ( 2*n*ulp )
239  END IF
240  END IF
241 *
242  RETURN
243 *
244 * End of SGET54
245 *
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slange.f:114
subroutine sgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
SGEMM
Definition: sgemm.f:187
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: