|  | LAPACK 3.12.1
    LAPACK: Linear Algebra PACKage | 
| subroutine zheevx | ( | character | jobz, | 
| character | range, | ||
| character | uplo, | ||
| integer | n, | ||
| complex*16, dimension( lda, * ) | a, | ||
| integer | lda, | ||
| double precision | vl, | ||
| double precision | vu, | ||
| integer | il, | ||
| integer | iu, | ||
| double precision | abstol, | ||
| integer | m, | ||
| double precision, dimension( * ) | w, | ||
| complex*16, dimension( ldz, * ) | z, | ||
| integer | ldz, | ||
| complex*16, dimension( * ) | work, | ||
| integer | lwork, | ||
| double precision, dimension( * ) | rwork, | ||
| integer, dimension( * ) | iwork, | ||
| integer, dimension( * ) | ifail, | ||
| integer | info ) | 
ZHEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices
Download ZHEEVX + dependencies [TGZ] [ZIP] [TXT]
!> !> ZHEEVX computes selected eigenvalues and, optionally, eigenvectors !> of a complex Hermitian matrix A. Eigenvalues and eigenvectors can !> be selected by specifying either a range of values or a range of !> indices for the desired eigenvalues. !>
| [in] | JOBZ | !> JOBZ is CHARACTER*1 !> = 'N': Compute eigenvalues only; !> = 'V': Compute eigenvalues and eigenvectors. !> | 
| [in] | RANGE | !> RANGE is CHARACTER*1 !> = 'A': all eigenvalues will be found. !> = 'V': all eigenvalues in the half-open interval (VL,VU] !> will be found. !> = 'I': the IL-th through IU-th eigenvalues will be found. !> | 
| [in] | UPLO | !> UPLO is CHARACTER*1 !> = 'U': Upper triangle of A is stored; !> = 'L': Lower triangle of A is stored. !> | 
| [in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> | 
| [in,out] | A | !> A is COMPLEX*16 array, dimension (LDA, N) !> On entry, the Hermitian matrix A. If UPLO = 'U', the !> leading N-by-N upper triangular part of A contains the !> upper triangular part of the matrix A. If UPLO = 'L', !> the leading N-by-N lower triangular part of A contains !> the lower triangular part of the matrix A. !> On exit, the lower triangle (if UPLO='L') or the upper !> triangle (if UPLO='U') of A, including the diagonal, is !> destroyed. !> | 
| [in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> | 
| [in] | VL | !> VL is DOUBLE PRECISION !> If RANGE='V', the lower bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> | 
| [in] | VU | !> VU is DOUBLE PRECISION !> If RANGE='V', the upper bound of the interval to !> be searched for eigenvalues. VL < VU. !> Not referenced if RANGE = 'A' or 'I'. !> | 
| [in] | IL | !> IL is INTEGER !> If RANGE='I', the index of the !> smallest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !> | 
| [in] | IU | !> IU is INTEGER !> If RANGE='I', the index of the !> largest eigenvalue to be returned. !> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. !> Not referenced if RANGE = 'A' or 'V'. !> | 
| [in] | ABSTOL | !>          ABSTOL is DOUBLE PRECISION
!>          The absolute error tolerance for the eigenvalues.
!>          An approximate eigenvalue is accepted as converged
!>          when it is determined to lie in an interval [a,b]
!>          of width less than or equal to
!>
!>                  ABSTOL + EPS *   max( |a|,|b| ) ,
!>
!>          where EPS is the machine precision.  If ABSTOL is less than
!>          or equal to zero, then  EPS*|T|  will be used in its place,
!>          where |T| is the 1-norm of the tridiagonal matrix obtained
!>          by reducing A to tridiagonal form.
!>
!>          Eigenvalues will be computed most accurately when ABSTOL is
!>          set to twice the underflow threshold 2*DLAMCH('S'), not zero.
!>          If this routine returns with INFO>0, indicating that some
!>          eigenvectors did not converge, try setting ABSTOL to
!>          2*DLAMCH('S').
!>
!>          See  by Demmel and
!>          Kahan, LAPACK Working Note #3.
!>  | 
| [out] | M | !> M is INTEGER !> The total number of eigenvalues found. 0 <= M <= N. !> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. !> | 
| [out] | W | !> W is DOUBLE PRECISION array, dimension (N) !> On normal exit, the first M elements contain the selected !> eigenvalues in ascending order. !> | 
| [out] | Z | !> Z is COMPLEX*16 array, dimension (LDZ, max(1,M)) !> If JOBZ = 'V', then if INFO = 0, the first M columns of Z !> contain the orthonormal eigenvectors of the matrix A !> corresponding to the selected eigenvalues, with the i-th !> column of Z holding the eigenvector associated with W(i). !> If an eigenvector fails to converge, then that column of Z !> contains the latest approximation to the eigenvector, and the !> index of the eigenvector is returned in IFAIL. !> If JOBZ = 'N', then Z is not referenced. !> Note: the user must ensure that at least max(1,M) columns are !> supplied in the array Z; if RANGE = 'V', the exact value of M !> is not known in advance and an upper bound must be used. !> | 
| [in] | LDZ | !> LDZ is INTEGER !> The leading dimension of the array Z. LDZ >= 1, and if !> JOBZ = 'V', LDZ >= max(1,N). !> | 
| [out] | WORK | !> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> | 
| [in] | LWORK | !> LWORK is INTEGER !> The length of the array WORK. LWORK >= 1, when N <= 1; !> otherwise 2*N. !> For optimal efficiency, LWORK >= (NB+1)*N, !> where NB is the max of the blocksize for ZHETRD and for !> ZUNMTR as returned by ILAENV. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> | 
| [out] | RWORK | !> RWORK is DOUBLE PRECISION array, dimension (7*N) !> | 
| [out] | IWORK | !> IWORK is INTEGER array, dimension (5*N) !> | 
| [out] | IFAIL | !> IFAIL is INTEGER array, dimension (N) !> If JOBZ = 'V', then if INFO = 0, the first M elements of !> IFAIL are zero. If INFO > 0, then IFAIL contains the !> indices of the eigenvectors that failed to converge. !> If JOBZ = 'N', then IFAIL is not referenced. !> | 
| [out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> > 0: if INFO = i, then i eigenvectors failed to converge. !> Their indices are stored in array IFAIL. !> | 
Definition at line 254 of file zheevx.f.