LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ claev2()

subroutine claev2 ( complex  A,
complex  B,
complex  C,
real  RT1,
real  RT2,
real  CS1,
complex  SN1 
)

CLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.

Download CLAEV2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLAEV2 computes the eigendecomposition of a 2-by-2 Hermitian matrix
    [  A         B  ]
    [  CONJG(B)  C  ].
 On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
 eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
 eigenvector for RT1, giving the decomposition

 [ CS1  CONJG(SN1) ] [    A     B ] [ CS1 -CONJG(SN1) ] = [ RT1  0  ]
 [-SN1     CS1     ] [ CONJG(B) C ] [ SN1     CS1     ]   [  0  RT2 ].
Parameters
[in]A
          A is COMPLEX
         The (1,1) element of the 2-by-2 matrix.
[in]B
          B is COMPLEX
         The (1,2) element and the conjugate of the (2,1) element of
         the 2-by-2 matrix.
[in]C
          C is COMPLEX
         The (2,2) element of the 2-by-2 matrix.
[out]RT1
          RT1 is REAL
         The eigenvalue of larger absolute value.
[out]RT2
          RT2 is REAL
         The eigenvalue of smaller absolute value.
[out]CS1
          CS1 is REAL
[out]SN1
          SN1 is COMPLEX
         The vector (CS1, SN1) is a unit right eigenvector for RT1.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  RT1 is accurate to a few ulps barring over/underflow.

  RT2 may be inaccurate if there is massive cancellation in the
  determinant A*C-B*B; higher precision or correctly rounded or
  correctly truncated arithmetic would be needed to compute RT2
  accurately in all cases.

  CS1 and SN1 are accurate to a few ulps barring over/underflow.

  Overflow is possible only if RT1 is within a factor of 5 of overflow.
  Underflow is harmless if the input data is 0 or exceeds
     underflow_threshold / macheps.

Definition at line 120 of file claev2.f.

121 *
122 * -- LAPACK auxiliary routine --
123 * -- LAPACK is a software package provided by Univ. of Tennessee, --
124 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125 *
126 * .. Scalar Arguments ..
127  REAL CS1, RT1, RT2
128  COMPLEX A, B, C, SN1
129 * ..
130 *
131 * =====================================================================
132 *
133 * .. Parameters ..
134  REAL ZERO
135  parameter( zero = 0.0e0 )
136  REAL ONE
137  parameter( one = 1.0e0 )
138 * ..
139 * .. Local Scalars ..
140  REAL T
141  COMPLEX W
142 * ..
143 * .. External Subroutines ..
144  EXTERNAL slaev2
145 * ..
146 * .. Intrinsic Functions ..
147  INTRINSIC abs, conjg, real
148 * ..
149 * .. Executable Statements ..
150 *
151  IF( abs( b ).EQ.zero ) THEN
152  w = one
153  ELSE
154  w = conjg( b ) / abs( b )
155  END IF
156  CALL slaev2( real( a ), abs( b ), real( c ), rt1, rt2, cs1, t )
157  sn1 = w*t
158  RETURN
159 *
160 * End of CLAEV2
161 *
subroutine slaev2(A, B, C, RT1, RT2, CS1, SN1)
SLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
Definition: slaev2.f:120
Here is the call graph for this function: