 LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ clansb()

 real function clansb ( character NORM, character UPLO, integer N, integer K, complex, dimension( ldab, * ) AB, integer LDAB, real, dimension( * ) WORK )

CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric band matrix.

Purpose:
``` CLANSB  returns the value of the one norm,  or the Frobenius norm, or
the  infinity norm,  or the element of  largest absolute value  of an
n by n symmetric band matrix A,  with k super-diagonals.```
Returns
CLANSB
```    CLANSB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A),         NORM = '1', 'O' or 'o'
(
( normI(A),         NORM = 'I' or 'i'
(
( normF(A),         NORM = 'F', 'f', 'E' or 'e'

where  norm1  denotes the  one norm of a matrix (maximum column sum),
normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
normF  denotes the  Frobenius norm of a matrix (square root of sum of
squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.```
Parameters
 [in] NORM ``` NORM is CHARACTER*1 Specifies the value to be returned in CLANSB as described above.``` [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the band matrix A is supplied. = 'U': Upper triangular part is supplied = 'L': Lower triangular part is supplied``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0. When N = 0, CLANSB is set to zero.``` [in] K ``` K is INTEGER The number of super-diagonals or sub-diagonals of the band matrix A. K >= 0.``` [in] AB ``` AB is COMPLEX array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first K+1 rows of AB. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).``` [in] LDAB ``` LDAB is INTEGER The leading dimension of the array AB. LDAB >= K+1.``` [out] WORK ``` WORK is REAL array, dimension (MAX(1,LWORK)), where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, WORK is not referenced.```

Definition at line 128 of file clansb.f.

130 *
131 * -- LAPACK auxiliary routine --
132 * -- LAPACK is a software package provided by Univ. of Tennessee, --
133 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
134 *
135 * .. Scalar Arguments ..
136  CHARACTER NORM, UPLO
137  INTEGER K, LDAB, N
138 * ..
139 * .. Array Arguments ..
140  REAL WORK( * )
141  COMPLEX AB( LDAB, * )
142 * ..
143 *
144 * =====================================================================
145 *
146 * .. Parameters ..
147  REAL ONE, ZERO
148  parameter( one = 1.0e+0, zero = 0.0e+0 )
149 * ..
150 * .. Local Scalars ..
151  INTEGER I, J, L
152  REAL ABSA, SCALE, SUM, VALUE
153 * ..
154 * .. External Functions ..
155  LOGICAL LSAME, SISNAN
156  EXTERNAL lsame, sisnan
157 * ..
158 * .. External Subroutines ..
159  EXTERNAL classq
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC abs, max, min, sqrt
163 * ..
164 * .. Executable Statements ..
165 *
166  IF( n.EQ.0 ) THEN
167  VALUE = zero
168  ELSE IF( lsame( norm, 'M' ) ) THEN
169 *
170 * Find max(abs(A(i,j))).
171 *
172  VALUE = zero
173  IF( lsame( uplo, 'U' ) ) THEN
174  DO 20 j = 1, n
175  DO 10 i = max( k+2-j, 1 ), k + 1
176  sum = abs( ab( i, j ) )
177  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
178  10 CONTINUE
179  20 CONTINUE
180  ELSE
181  DO 40 j = 1, n
182  DO 30 i = 1, min( n+1-j, k+1 )
183  sum = abs( ab( i, j ) )
184  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
185  30 CONTINUE
186  40 CONTINUE
187  END IF
188  ELSE IF( ( lsame( norm, 'I' ) ) .OR. ( lsame( norm, 'O' ) ) .OR.
189  \$ ( norm.EQ.'1' ) ) THEN
190 *
191 * Find normI(A) ( = norm1(A), since A is symmetric).
192 *
193  VALUE = zero
194  IF( lsame( uplo, 'U' ) ) THEN
195  DO 60 j = 1, n
196  sum = zero
197  l = k + 1 - j
198  DO 50 i = max( 1, j-k ), j - 1
199  absa = abs( ab( l+i, j ) )
200  sum = sum + absa
201  work( i ) = work( i ) + absa
202  50 CONTINUE
203  work( j ) = sum + abs( ab( k+1, j ) )
204  60 CONTINUE
205  DO 70 i = 1, n
206  sum = work( i )
207  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
208  70 CONTINUE
209  ELSE
210  DO 80 i = 1, n
211  work( i ) = zero
212  80 CONTINUE
213  DO 100 j = 1, n
214  sum = work( j ) + abs( ab( 1, j ) )
215  l = 1 - j
216  DO 90 i = j + 1, min( n, j+k )
217  absa = abs( ab( l+i, j ) )
218  sum = sum + absa
219  work( i ) = work( i ) + absa
220  90 CONTINUE
221  IF( VALUE .LT. sum .OR. sisnan( sum ) ) VALUE = sum
222  100 CONTINUE
223  END IF
224  ELSE IF( ( lsame( norm, 'F' ) ) .OR. ( lsame( norm, 'E' ) ) ) THEN
225 *
226 * Find normF(A).
227 *
228  scale = zero
229  sum = one
230  IF( k.GT.0 ) THEN
231  IF( lsame( uplo, 'U' ) ) THEN
232  DO 110 j = 2, n
233  CALL classq( min( j-1, k ), ab( max( k+2-j, 1 ), j ),
234  \$ 1, scale, sum )
235  110 CONTINUE
236  l = k + 1
237  ELSE
238  DO 120 j = 1, n - 1
239  CALL classq( min( n-j, k ), ab( 2, j ), 1, scale,
240  \$ sum )
241  120 CONTINUE
242  l = 1
243  END IF
244  sum = 2*sum
245  ELSE
246  l = 1
247  END IF
248  CALL classq( n, ab( l, 1 ), ldab, scale, sum )
249  VALUE = scale*sqrt( sum )
250  END IF
251 *
252  clansb = VALUE
253  RETURN
254 *
255 * End of CLANSB
256 *
subroutine classq(n, x, incx, scl, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
Definition: classq.f90:137
logical function sisnan(SIN)
SISNAN tests input for NaN.
Definition: sisnan.f:59
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function clansb(NORM, UPLO, N, K, AB, LDAB, WORK)
CLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clansb.f:130
Here is the call graph for this function: