LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgeql2.f
Go to the documentation of this file.
1*> \brief \b SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SGEQL2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeql2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeql2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeql2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SGEQL2( M, N, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* REAL A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> SGEQL2 computes a QL factorization of a real m by n matrix A:
35*> A = Q * L.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in,out] A
54*> \verbatim
55*> A is REAL array, dimension (LDA,N)
56*> On entry, the m by n matrix A.
57*> On exit, if m >= n, the lower triangle of the subarray
58*> A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
59*> if m <= n, the elements on and below the (n-m)-th
60*> superdiagonal contain the m by n lower trapezoidal matrix L;
61*> the remaining elements, with the array TAU, represent the
62*> orthogonal matrix Q as a product of elementary reflectors
63*> (see Further Details).
64*> \endverbatim
65*>
66*> \param[in] LDA
67*> \verbatim
68*> LDA is INTEGER
69*> The leading dimension of the array A. LDA >= max(1,M).
70*> \endverbatim
71*>
72*> \param[out] TAU
73*> \verbatim
74*> TAU is REAL array, dimension (min(M,N))
75*> The scalar factors of the elementary reflectors (see Further
76*> Details).
77*> \endverbatim
78*>
79*> \param[out] WORK
80*> \verbatim
81*> WORK is REAL array, dimension (N)
82*> \endverbatim
83*>
84*> \param[out] INFO
85*> \verbatim
86*> INFO is INTEGER
87*> = 0: successful exit
88*> < 0: if INFO = -i, the i-th argument had an illegal value
89*> \endverbatim
90*
91* Authors:
92* ========
93*
94*> \author Univ. of Tennessee
95*> \author Univ. of California Berkeley
96*> \author Univ. of Colorado Denver
97*> \author NAG Ltd.
98*
99*> \ingroup geql2
100*
101*> \par Further Details:
102* =====================
103*>
104*> \verbatim
105*>
106*> The matrix Q is represented as a product of elementary reflectors
107*>
108*> Q = H(k) . . . H(2) H(1), where k = min(m,n).
109*>
110*> Each H(i) has the form
111*>
112*> H(i) = I - tau * v * v**T
113*>
114*> where tau is a real scalar, and v is a real vector with
115*> v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
116*> A(1:m-k+i-1,n-k+i), and tau in TAU(i).
117*> \endverbatim
118*>
119* =====================================================================
120 SUBROUTINE sgeql2( M, N, A, LDA, TAU, WORK, INFO )
121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 REAL A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Local Scalars ..
136 INTEGER I, K
137* ..
138* .. External Subroutines ..
139 EXTERNAL slarf1l, slarfg, xerbla
140* ..
141* .. Intrinsic Functions ..
142 INTRINSIC max, min
143* ..
144* .. Executable Statements ..
145*
146* Test the input arguments
147*
148 info = 0
149 IF( m.LT.0 ) THEN
150 info = -1
151 ELSE IF( n.LT.0 ) THEN
152 info = -2
153 ELSE IF( lda.LT.max( 1, m ) ) THEN
154 info = -4
155 END IF
156 IF( info.NE.0 ) THEN
157 CALL xerbla( 'SGEQL2', -info )
158 RETURN
159 END IF
160*
161 k = min( m, n )
162*
163 DO 10 i = k, 1, -1
164*
165* Generate elementary reflector H(i) to annihilate
166* A(1:m-k+i-1,n-k+i)
167*
168 CALL slarfg( m-k+i, a( m-k+i, n-k+i ), a( 1, n-k+i ), 1,
169 $ tau( i ) )
170*
171* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left
172*
173 CALL slarf1l( 'Left', m-k+i, n-k+i-1, a( 1, n-k+i ), 1,
174 $ tau( i ), a, lda, work )
175 10 CONTINUE
176 RETURN
177*
178* End of SGEQL2
179*
180 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeql2(m, n, a, lda, tau, work, info)
SGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.
Definition sgeql2.f:121
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:104
subroutine slarf1l(side, m, n, v, incv, tau, c, ldc, work)
SLARF1L applies an elementary reflector to a general rectangular
Definition slarf1l.f:125