LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cgetrf()

subroutine cgetrf ( integer  M,
integer  N,
complex, dimension( lda, * )  A,
integer  LDA,
integer, dimension( * )  IPIV,
integer  INFO 
)

CGETRF

CGETRF VARIANT: iterative version of Sivan Toledo's recursive LU algorithm

CGETRF VARIANT: left-looking Level 3 BLAS version of the algorithm.

Download CGETRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algorithm.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Purpose:

 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the left-looking Level 3 BLAS version of the algorithm.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Purpose:

 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This code implements an iterative version of Sivan Toledo's recursive
 LU algorithm[1].  For square matrices, this iterative versions should
 be within a factor of two of the optimum number of memory transfers.

 The pattern is as follows, with the large blocks of U being updated
 in one call to DTRSM, and the dotted lines denoting sections that
 have had all pending permutations applied:

  1 2 3 4 5 6 7 8
 +-+-+---+-------+------
 | |1|   |       |
 |.+-+ 2 |       |
 | | |   |       |
 |.|.+-+-+   4   |
 | | | |1|       |
 | | |.+-+       |
 | | | | |       |
 |.|.|.|.+-+-+---+  8
 | | | | | |1|   |
 | | | | |.+-+ 2 |
 | | | | | | |   |
 | | | | |.|.+-+-+
 | | | | | | | |1|
 | | | | | | |.+-+
 | | | | | | | | |
 |.|.|.|.|.|.|.|.+-----
 | | | | | | | | |

 The 1-2-1-4-1-2-1-8-... pattern is the position of the last 1 bit in
 the binary expansion of the current column.  Each Schur update is
 applied as soon as the necessary portion of U is available.

 [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with
 Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997),
 1065-1081. http://dx.doi.org/10.1137/S0895479896297744
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
December 2016

Definition at line 107 of file cgetrf.f.

108 *
109 * -- LAPACK computational routine --
110 * -- LAPACK is a software package provided by Univ. of Tennessee, --
111 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112 *
113 * .. Scalar Arguments ..
114  INTEGER INFO, LDA, M, N
115 * ..
116 * .. Array Arguments ..
117  INTEGER IPIV( * )
118  COMPLEX A( LDA, * )
119 * ..
120 *
121 * =====================================================================
122 *
123 * .. Parameters ..
124  COMPLEX ONE
125  parameter( one = ( 1.0e+0, 0.0e+0 ) )
126 * ..
127 * .. Local Scalars ..
128  INTEGER I, IINFO, J, JB, NB
129 * ..
130 * .. External Subroutines ..
131  EXTERNAL cgemm, cgetrf2, claswp, ctrsm, xerbla
132 * ..
133 * .. External Functions ..
134  INTEGER ILAENV
135  EXTERNAL ilaenv
136 * ..
137 * .. Intrinsic Functions ..
138  INTRINSIC max, min
139 * ..
140 * .. Executable Statements ..
141 *
142 * Test the input parameters.
143 *
144  info = 0
145  IF( m.LT.0 ) THEN
146  info = -1
147  ELSE IF( n.LT.0 ) THEN
148  info = -2
149  ELSE IF( lda.LT.max( 1, m ) ) THEN
150  info = -4
151  END IF
152  IF( info.NE.0 ) THEN
153  CALL xerbla( 'CGETRF', -info )
154  RETURN
155  END IF
156 *
157 * Quick return if possible
158 *
159  IF( m.EQ.0 .OR. n.EQ.0 )
160  $ RETURN
161 *
162 * Determine the block size for this environment.
163 *
164  nb = ilaenv( 1, 'CGETRF', ' ', m, n, -1, -1 )
165  IF( nb.LE.1 .OR. nb.GE.min( m, n ) ) THEN
166 *
167 * Use unblocked code.
168 *
169  CALL cgetrf2( m, n, a, lda, ipiv, info )
170  ELSE
171 *
172 * Use blocked code.
173 *
174  DO 20 j = 1, min( m, n ), nb
175  jb = min( min( m, n )-j+1, nb )
176 *
177 * Factor diagonal and subdiagonal blocks and test for exact
178 * singularity.
179 *
180  CALL cgetrf2( m-j+1, jb, a( j, j ), lda, ipiv( j ), iinfo )
181 *
182 * Adjust INFO and the pivot indices.
183 *
184  IF( info.EQ.0 .AND. iinfo.GT.0 )
185  $ info = iinfo + j - 1
186  DO 10 i = j, min( m, j+jb-1 )
187  ipiv( i ) = j - 1 + ipiv( i )
188  10 CONTINUE
189 *
190 * Apply interchanges to columns 1:J-1.
191 *
192  CALL claswp( j-1, a, lda, j, j+jb-1, ipiv, 1 )
193 *
194  IF( j+jb.LE.n ) THEN
195 *
196 * Apply interchanges to columns J+JB:N.
197 *
198  CALL claswp( n-j-jb+1, a( 1, j+jb ), lda, j, j+jb-1,
199  $ ipiv, 1 )
200 *
201 * Compute block row of U.
202 *
203  CALL ctrsm( 'Left', 'Lower', 'No transpose', 'Unit', jb,
204  $ n-j-jb+1, one, a( j, j ), lda, a( j, j+jb ),
205  $ lda )
206  IF( j+jb.LE.m ) THEN
207 *
208 * Update trailing submatrix.
209 *
210  CALL cgemm( 'No transpose', 'No transpose', m-j-jb+1,
211  $ n-j-jb+1, jb, -one, a( j+jb, j ), lda,
212  $ a( j, j+jb ), lda, one, a( j+jb, j+jb ),
213  $ lda )
214  END IF
215  END IF
216  20 CONTINUE
217  END IF
218  RETURN
219 *
220 * End of CGETRF
221 *
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:180
recursive subroutine cgetrf2(M, N, A, LDA, IPIV, INFO)
CGETRF2
Definition: cgetrf2.f:113
subroutine claswp(N, A, LDA, K1, K2, IPIV, INCX)
CLASWP performs a series of row interchanges on a general rectangular matrix.
Definition: claswp.f:115
Here is the call graph for this function:
Here is the caller graph for this function: