 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ cla_gercond_x()

 real function cla_gercond_x ( character TRANS, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldaf, * ) AF, integer LDAF, integer, dimension( * ) IPIV, complex, dimension( * ) X, integer INFO, complex, dimension( * ) WORK, real, dimension( * ) RWORK )

CLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.

Purpose:
CLA_GERCOND_X computes the infinity norm condition number of
op(A) * diag(X) where X is a COMPLEX vector.
Parameters
 [in] TRANS TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate Transpose = Transpose) [in] N N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. [in] A A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). [in] AF AF is COMPLEX array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF. [in] LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). [in] IPIV IPIV is INTEGER array, dimension (N) The pivot indices from the factorization A = P*L*U as computed by CGETRF; row i of the matrix was interchanged with row IPIV(i). [in] X X is COMPLEX array, dimension (N) The vector X in the formula op(A) * diag(X). [out] INFO INFO is INTEGER = 0: Successful exit. i > 0: The ith argument is invalid. [out] WORK WORK is COMPLEX array, dimension (2*N). Workspace. [out] RWORK RWORK is REAL array, dimension (N). Workspace.

Definition at line 133 of file cla_gercond_x.f.

135 *
136 * -- LAPACK computational routine --
137 * -- LAPACK is a software package provided by Univ. of Tennessee, --
138 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
139 *
140 * .. Scalar Arguments ..
141  CHARACTER TRANS
142  INTEGER N, LDA, LDAF, INFO
143 * ..
144 * .. Array Arguments ..
145  INTEGER IPIV( * )
146  COMPLEX A( LDA, * ), AF( LDAF, * ), WORK( * ), X( * )
147  REAL RWORK( * )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Local Scalars ..
153  LOGICAL NOTRANS
154  INTEGER KASE
155  REAL AINVNM, ANORM, TMP
156  INTEGER I, J
157  COMPLEX ZDUM
158 * ..
159 * .. Local Arrays ..
160  INTEGER ISAVE( 3 )
161 * ..
162 * .. External Functions ..
163  LOGICAL LSAME
164  EXTERNAL lsame
165 * ..
166 * .. External Subroutines ..
167  EXTERNAL clacn2, cgetrs, xerbla
168 * ..
169 * .. Intrinsic Functions ..
170  INTRINSIC abs, max, real, aimag
171 * ..
172 * .. Statement Functions ..
173  REAL CABS1
174 * ..
175 * .. Statement Function Definitions ..
176  cabs1( zdum ) = abs( real( zdum ) ) + abs( aimag( zdum ) )
177 * ..
178 * .. Executable Statements ..
179 *
180  cla_gercond_x = 0.0e+0
181 *
182  info = 0
183  notrans = lsame( trans, 'N' )
184  IF ( .NOT. notrans .AND. .NOT. lsame( trans, 'T' ) .AND. .NOT.
185  \$ lsame( trans, 'C' ) ) THEN
186  info = -1
187  ELSE IF( n.LT.0 ) THEN
188  info = -2
189  ELSE IF( lda.LT.max( 1, n ) ) THEN
190  info = -4
191  ELSE IF( ldaf.LT.max( 1, n ) ) THEN
192  info = -6
193  END IF
194  IF( info.NE.0 ) THEN
195  CALL xerbla( 'CLA_GERCOND_X', -info )
196  RETURN
197  END IF
198 *
199 * Compute norm of op(A)*op2(C).
200 *
201  anorm = 0.0
202  IF ( notrans ) THEN
203  DO i = 1, n
204  tmp = 0.0e+0
205  DO j = 1, n
206  tmp = tmp + cabs1( a( i, j ) * x( j ) )
207  END DO
208  rwork( i ) = tmp
209  anorm = max( anorm, tmp )
210  END DO
211  ELSE
212  DO i = 1, n
213  tmp = 0.0e+0
214  DO j = 1, n
215  tmp = tmp + cabs1( a( j, i ) * x( j ) )
216  END DO
217  rwork( i ) = tmp
218  anorm = max( anorm, tmp )
219  END DO
220  END IF
221 *
222 * Quick return if possible.
223 *
224  IF( n.EQ.0 ) THEN
225  cla_gercond_x = 1.0e+0
226  RETURN
227  ELSE IF( anorm .EQ. 0.0e+0 ) THEN
228  RETURN
229  END IF
230 *
231 * Estimate the norm of inv(op(A)).
232 *
233  ainvnm = 0.0e+0
234 *
235  kase = 0
236  10 CONTINUE
237  CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
238  IF( kase.NE.0 ) THEN
239  IF( kase.EQ.2 ) THEN
240 * Multiply by R.
241  DO i = 1, n
242  work( i ) = work( i ) * rwork( i )
243  END DO
244 *
245  IF ( notrans ) THEN
246  CALL cgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
247  \$ work, n, info )
248  ELSE
249  CALL cgetrs( 'Conjugate transpose', n, 1, af, ldaf, ipiv,
250  \$ work, n, info )
251  ENDIF
252 *
253 * Multiply by inv(X).
254 *
255  DO i = 1, n
256  work( i ) = work( i ) / x( i )
257  END DO
258  ELSE
259 *
260 * Multiply by inv(X**H).
261 *
262  DO i = 1, n
263  work( i ) = work( i ) / x( i )
264  END DO
265 *
266  IF ( notrans ) THEN
267  CALL cgetrs( 'Conjugate transpose', n, 1, af, ldaf, ipiv,
268  \$ work, n, info )
269  ELSE
270  CALL cgetrs( 'No transpose', n, 1, af, ldaf, ipiv,
271  \$ work, n, info )
272  END IF
273 *
274 * Multiply by R.
275 *
276  DO i = 1, n
277  work( i ) = work( i ) * rwork( i )
278  END DO
279  END IF
280  GO TO 10
281  END IF
282 *
283 * Compute the estimate of the reciprocal condition number.
284 *
285  IF( ainvnm .NE. 0.0e+0 )
286  \$ cla_gercond_x = 1.0e+0 / ainvnm
287 *
288  RETURN
289 *
290 * End of CLA_GERCOND_X
291 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine cgetrs(TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CGETRS
Definition: cgetrs.f:121
real function cla_gercond_x(TRANS, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
CLA_GERCOND_X computes the infinity norm condition number of op(A)*diag(x) for general matrices.
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition: clacn2.f:133
Here is the call graph for this function:
Here is the caller graph for this function: