LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

◆ cgeqrfp()

 subroutine cgeqrfp ( integer M, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer LWORK, integer INFO )

CGEQRFP

Purpose:
``` CGEQR2P computes a QR factorization of a complex M-by-N matrix A:

A = Q * ( R ),
( 0 )

where:

Q is a M-by-M orthogonal matrix;
R is an upper-triangular N-by-N matrix with nonnegative diagonal
entries;
0 is a (M-N)-by-N zero matrix, if M > N.```
Parameters
 [in] M ``` M is INTEGER The number of rows of the matrix A. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix A. N >= 0.``` [in,out] A ``` A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. On exit, the elements on and above the diagonal of the array contain the min(M,N)-by-N upper trapezoidal matrix R (R is upper triangular if m >= n). The diagonal entries of R are real and nonnegative; the elements below the diagonal, with the array TAU, represent the unitary matrix Q as a product of min(m,n) elementary reflectors (see Further Details).``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).``` [out] TAU ``` TAU is COMPLEX array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).``` [out] WORK ``` WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.``` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,N). For optimum performance LWORK >= N*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value```
Further Details:
```  The matrix Q is represented as a product of elementary reflectors

Q = H(1) H(2) . . . H(k), where k = min(m,n).

Each H(i) has the form

H(i) = I - tau * v * v**H

where tau is a complex scalar, and v is a complex vector with
v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
and tau in TAU(i).

See Lapack Working Note 203 for details```

Definition at line 148 of file cgeqrfp.f.

149 *
150 * -- LAPACK computational routine --
151 * -- LAPACK is a software package provided by Univ. of Tennessee, --
152 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
153 *
154 * .. Scalar Arguments ..
155  INTEGER INFO, LDA, LWORK, M, N
156 * ..
157 * .. Array Arguments ..
158  COMPLEX A( LDA, * ), TAU( * ), WORK( * )
159 * ..
160 *
161 * =====================================================================
162 *
163 * .. Local Scalars ..
164  LOGICAL LQUERY
165  INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
166  \$ NBMIN, NX
167 * ..
168 * .. External Subroutines ..
169  EXTERNAL cgeqr2p, clarfb, clarft, xerbla
170 * ..
171 * .. Intrinsic Functions ..
172  INTRINSIC max, min
173 * ..
174 * .. External Functions ..
175  INTEGER ILAENV
176  EXTERNAL ilaenv
177 * ..
178 * .. Executable Statements ..
179 *
180 * Test the input arguments
181 *
182  info = 0
183  nb = ilaenv( 1, 'CGEQRF', ' ', m, n, -1, -1 )
184  lwkopt = n*nb
185  work( 1 ) = lwkopt
186  lquery = ( lwork.EQ.-1 )
187  IF( m.LT.0 ) THEN
188  info = -1
189  ELSE IF( n.LT.0 ) THEN
190  info = -2
191  ELSE IF( lda.LT.max( 1, m ) ) THEN
192  info = -4
193  ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
194  info = -7
195  END IF
196  IF( info.NE.0 ) THEN
197  CALL xerbla( 'CGEQRFP', -info )
198  RETURN
199  ELSE IF( lquery ) THEN
200  RETURN
201  END IF
202 *
203 * Quick return if possible
204 *
205  k = min( m, n )
206  IF( k.EQ.0 ) THEN
207  work( 1 ) = 1
208  RETURN
209  END IF
210 *
211  nbmin = 2
212  nx = 0
213  iws = n
214  IF( nb.GT.1 .AND. nb.LT.k ) THEN
215 *
216 * Determine when to cross over from blocked to unblocked code.
217 *
218  nx = max( 0, ilaenv( 3, 'CGEQRF', ' ', m, n, -1, -1 ) )
219  IF( nx.LT.k ) THEN
220 *
221 * Determine if workspace is large enough for blocked code.
222 *
223  ldwork = n
224  iws = ldwork*nb
225  IF( lwork.LT.iws ) THEN
226 *
227 * Not enough workspace to use optimal NB: reduce NB and
228 * determine the minimum value of NB.
229 *
230  nb = lwork / ldwork
231  nbmin = max( 2, ilaenv( 2, 'CGEQRF', ' ', m, n, -1,
232  \$ -1 ) )
233  END IF
234  END IF
235  END IF
236 *
237  IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
238 *
239 * Use blocked code initially
240 *
241  DO 10 i = 1, k - nx, nb
242  ib = min( k-i+1, nb )
243 *
244 * Compute the QR factorization of the current block
245 * A(i:m,i:i+ib-1)
246 *
247  CALL cgeqr2p( m-i+1, ib, a( i, i ), lda, tau( i ), work,
248  \$ iinfo )
249  IF( i+ib.LE.n ) THEN
250 *
251 * Form the triangular factor of the block reflector
252 * H = H(i) H(i+1) . . . H(i+ib-1)
253 *
254  CALL clarft( 'Forward', 'Columnwise', m-i+1, ib,
255  \$ a( i, i ), lda, tau( i ), work, ldwork )
256 *
257 * Apply H**H to A(i:m,i+ib:n) from the left
258 *
259  CALL clarfb( 'Left', 'Conjugate transpose', 'Forward',
260  \$ 'Columnwise', m-i+1, n-i-ib+1, ib,
261  \$ a( i, i ), lda, work, ldwork, a( i, i+ib ),
262  \$ lda, work( ib+1 ), ldwork )
263  END IF
264  10 CONTINUE
265  ELSE
266  i = 1
267  END IF
268 *
269 * Use unblocked code to factor the last or only block.
270 *
271  IF( i.LE.k )
272  \$ CALL cgeqr2p( m-i+1, n-i+1, a( i, i ), lda, tau( i ), work,
273  \$ iinfo )
274 *
275  work( 1 ) = iws
276  RETURN
277 *
278 * End of CGEQRFP
279 *
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cgeqr2p(M, N, A, LDA, TAU, WORK, INFO)
CGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
Definition: cgeqr2p.f:134
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition: clarfb.f:197
subroutine clarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: clarft.f:163
Here is the call graph for this function:
Here is the caller graph for this function: