LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cgemqrt()

subroutine cgemqrt ( character  SIDE,
character  TRANS,
integer  M,
integer  N,
integer  K,
integer  NB,
complex, dimension( ldv, * )  V,
integer  LDV,
complex, dimension( ldt, * )  T,
integer  LDT,
complex, dimension( ldc, * )  C,
integer  LDC,
complex, dimension( * )  WORK,
integer  INFO 
)

CGEMQRT

Download CGEMQRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGEMQRT overwrites the general complex M-by-N matrix C with

                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q C            C Q
 TRANS = 'C':    Q**H C            C Q**H

 where Q is a complex orthogonal matrix defined as the product of K
 elementary reflectors:

       Q = H(1) H(2) . . . H(K) = I - V T V**H

 generated using the compact WY representation as returned by CGEQRT.

 Q is of order M if SIDE = 'L' and of order N  if SIDE = 'R'.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**H from the Left;
          = 'R': apply Q or Q**H from the Right.
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'C':  Conjugate transpose, apply Q**H.
[in]M
          M is INTEGER
          The number of rows of the matrix C. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix C. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
          If SIDE = 'L', M >= K >= 0;
          if SIDE = 'R', N >= K >= 0.
[in]NB
          NB is INTEGER
          The block size used for the storage of T.  K >= NB >= 1.
          This must be the same value of NB used to generate T
          in CGEQRT.
[in]V
          V is COMPLEX array, dimension (LDV,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          CGEQRT in the first K columns of its array argument A.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If SIDE = 'L', LDA >= max(1,M);
          if SIDE = 'R', LDA >= max(1,N).
[in]T
          T is COMPLEX array, dimension (LDT,K)
          The upper triangular factors of the block reflectors
          as returned by CGEQRT, stored as a NB-by-N matrix.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
[in,out]C
          C is COMPLEX array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q C, Q**H C, C Q**H or C Q.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).
[out]WORK
          WORK is COMPLEX array. The dimension of WORK is
           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 166 of file cgemqrt.f.

168 *
169 * -- LAPACK computational routine --
170 * -- LAPACK is a software package provided by Univ. of Tennessee, --
171 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
172 *
173 * .. Scalar Arguments ..
174  CHARACTER SIDE, TRANS
175  INTEGER INFO, K, LDV, LDC, M, N, NB, LDT
176 * ..
177 * .. Array Arguments ..
178  COMPLEX V( LDV, * ), C( LDC, * ), T( LDT, * ), WORK( * )
179 * ..
180 *
181 * =====================================================================
182 *
183 * ..
184 * .. Local Scalars ..
185  LOGICAL LEFT, RIGHT, TRAN, NOTRAN
186  INTEGER I, IB, LDWORK, KF, Q
187 * ..
188 * .. External Functions ..
189  LOGICAL LSAME
190  EXTERNAL lsame
191 * ..
192 * .. External Subroutines ..
193  EXTERNAL xerbla, clarfb
194 * ..
195 * .. Intrinsic Functions ..
196  INTRINSIC max, min
197 * ..
198 * .. Executable Statements ..
199 *
200 * .. Test the input arguments ..
201 *
202  info = 0
203  left = lsame( side, 'L' )
204  right = lsame( side, 'R' )
205  tran = lsame( trans, 'C' )
206  notran = lsame( trans, 'N' )
207 *
208  IF( left ) THEN
209  ldwork = max( 1, n )
210  q = m
211  ELSE IF ( right ) THEN
212  ldwork = max( 1, m )
213  q = n
214  END IF
215  IF( .NOT.left .AND. .NOT.right ) THEN
216  info = -1
217  ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
218  info = -2
219  ELSE IF( m.LT.0 ) THEN
220  info = -3
221  ELSE IF( n.LT.0 ) THEN
222  info = -4
223  ELSE IF( k.LT.0 .OR. k.GT.q ) THEN
224  info = -5
225  ELSE IF( nb.LT.1 .OR. (nb.GT.k .AND. k.GT.0)) THEN
226  info = -6
227  ELSE IF( ldv.LT.max( 1, q ) ) THEN
228  info = -8
229  ELSE IF( ldt.LT.nb ) THEN
230  info = -10
231  ELSE IF( ldc.LT.max( 1, m ) ) THEN
232  info = -12
233  END IF
234 *
235  IF( info.NE.0 ) THEN
236  CALL xerbla( 'CGEMQRT', -info )
237  RETURN
238  END IF
239 *
240 * .. Quick return if possible ..
241 *
242  IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) RETURN
243 *
244  IF( left .AND. tran ) THEN
245 *
246  DO i = 1, k, nb
247  ib = min( nb, k-i+1 )
248  CALL clarfb( 'L', 'C', 'F', 'C', m-i+1, n, ib,
249  $ v( i, i ), ldv, t( 1, i ), ldt,
250  $ c( i, 1 ), ldc, work, ldwork )
251  END DO
252 *
253  ELSE IF( right .AND. notran ) THEN
254 *
255  DO i = 1, k, nb
256  ib = min( nb, k-i+1 )
257  CALL clarfb( 'R', 'N', 'F', 'C', m, n-i+1, ib,
258  $ v( i, i ), ldv, t( 1, i ), ldt,
259  $ c( 1, i ), ldc, work, ldwork )
260  END DO
261 *
262  ELSE IF( left .AND. notran ) THEN
263 *
264  kf = ((k-1)/nb)*nb+1
265  DO i = kf, 1, -nb
266  ib = min( nb, k-i+1 )
267  CALL clarfb( 'L', 'N', 'F', 'C', m-i+1, n, ib,
268  $ v( i, i ), ldv, t( 1, i ), ldt,
269  $ c( i, 1 ), ldc, work, ldwork )
270  END DO
271 *
272  ELSE IF( right .AND. tran ) THEN
273 *
274  kf = ((k-1)/nb)*nb+1
275  DO i = kf, 1, -nb
276  ib = min( nb, k-i+1 )
277  CALL clarfb( 'R', 'C', 'F', 'C', m, n-i+1, ib,
278  $ v( i, i ), ldv, t( 1, i ), ldt,
279  $ c( 1, i ), ldc, work, ldwork )
280  END DO
281 *
282  END IF
283 *
284  RETURN
285 *
286 * End of CGEMQRT
287 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition: clarfb.f:197
Here is the call graph for this function:
Here is the caller graph for this function: