LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlaqr0()

subroutine dlaqr0 ( logical wantt,
logical wantz,
integer n,
integer ilo,
integer ihi,
double precision, dimension( ldh, * ) h,
integer ldh,
double precision, dimension( * ) wr,
double precision, dimension( * ) wi,
integer iloz,
integer ihiz,
double precision, dimension( ldz, * ) z,
integer ldz,
double precision, dimension( * ) work,
integer lwork,
integer info )

DLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.

Download DLAQR0 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    DLAQR0 computes the eigenvalues of a Hessenberg matrix H
!>    and, optionally, the matrices T and Z from the Schur decomposition
!>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
!>    Schur form), and Z is the orthogonal matrix of Schur vectors.
!>
!>    Optionally Z may be postmultiplied into an input orthogonal
!>    matrix Q so that this routine can give the Schur factorization
!>    of a matrix A which has been reduced to the Hessenberg form H
!>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
!> 
Parameters
[in]WANTT
!>          WANTT is LOGICAL
!>          = .TRUE. : the full Schur form T is required;
!>          = .FALSE.: only eigenvalues are required.
!> 
[in]WANTZ
!>          WANTZ is LOGICAL
!>          = .TRUE. : the matrix of Schur vectors Z is required;
!>          = .FALSE.: Schur vectors are not required.
!> 
[in]N
!>          N is INTEGER
!>           The order of the matrix H.  N >= 0.
!> 
[in]ILO
!>          ILO is INTEGER
!> 
[in]IHI
!>          IHI is INTEGER
!>           It is assumed that H is already upper triangular in rows
!>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
!>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
!>           previous call to DGEBAL, and then passed to DGEHRD when the
!>           matrix output by DGEBAL is reduced to Hessenberg form.
!>           Otherwise, ILO and IHI should be set to 1 and N,
!>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
!>           If N = 0, then ILO = 1 and IHI = 0.
!> 
[in,out]H
!>          H is DOUBLE PRECISION array, dimension (LDH,N)
!>           On entry, the upper Hessenberg matrix H.
!>           On exit, if INFO = 0 and WANTT is .TRUE., then H contains
!>           the upper quasi-triangular matrix T from the Schur
!>           decomposition (the Schur form); 2-by-2 diagonal blocks
!>           (corresponding to complex conjugate pairs of eigenvalues)
!>           are returned in standard form, with H(i,i) = H(i+1,i+1)
!>           and H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and WANTT is
!>           .FALSE., then the contents of H are unspecified on exit.
!>           (The output value of H when INFO > 0 is given under the
!>           description of INFO below.)
!>
!>           This subroutine may explicitly set H(i,j) = 0 for i > j and
!>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
!> 
[in]LDH
!>          LDH is INTEGER
!>           The leading dimension of the array H. LDH >= max(1,N).
!> 
[out]WR
!>          WR is DOUBLE PRECISION array, dimension (IHI)
!> 
[out]WI
!>          WI is DOUBLE PRECISION array, dimension (IHI)
!>           The real and imaginary parts, respectively, of the computed
!>           eigenvalues of H(ILO:IHI,ILO:IHI) are stored in WR(ILO:IHI)
!>           and WI(ILO:IHI). If two eigenvalues are computed as a
!>           complex conjugate pair, they are stored in consecutive
!>           elements of WR and WI, say the i-th and (i+1)th, with
!>           WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., then
!>           the eigenvalues are stored in the same order as on the
!>           diagonal of the Schur form returned in H, with
!>           WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 diagonal
!>           block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
!>           WI(i+1) = -WI(i).
!> 
[in]ILOZ
!>          ILOZ is INTEGER
!> 
[in]IHIZ
!>          IHIZ is INTEGER
!>           Specify the rows of Z to which transformations must be
!>           applied if WANTZ is .TRUE..
!>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
!> 
[in,out]Z
!>          Z is DOUBLE PRECISION array, dimension (LDZ,IHI)
!>           If WANTZ is .FALSE., then Z is not referenced.
!>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
!>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
!>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
!>           (The output value of Z when INFO > 0 is given under
!>           the description of INFO below.)
!> 
[in]LDZ
!>          LDZ is INTEGER
!>           The leading dimension of the array Z.  if WANTZ is .TRUE.
!>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension LWORK
!>           On exit, if LWORK = -1, WORK(1) returns an estimate of
!>           the optimal value for LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>           The dimension of the array WORK.  LWORK >= max(1,N)
!>           is sufficient, but LWORK typically as large as 6*N may
!>           be required for optimal performance.  A workspace query
!>           to determine the optimal workspace size is recommended.
!>
!>           If LWORK = -1, then DLAQR0 does a workspace query.
!>           In this case, DLAQR0 checks the input parameters and
!>           estimates the optimal workspace size for the given
!>           values of N, ILO and IHI.  The estimate is returned
!>           in WORK(1).  No error message related to LWORK is
!>           issued by XERBLA.  Neither H nor Z are accessed.
!> 
[out]INFO
!>          INFO is INTEGER
!>             = 0:  successful exit
!>             > 0:  if INFO = i, DLAQR0 failed to compute all of
!>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
!>                and WI contain those eigenvalues which have been
!>                successfully computed.  (Failures are rare.)
!>
!>                If INFO > 0 and WANT is .FALSE., then on exit,
!>                the remaining unconverged eigenvalues are the eigen-
!>                values of the upper Hessenberg matrix rows and
!>                columns ILO through INFO of the final, output
!>                value of H.
!>
!>                If INFO > 0 and WANTT is .TRUE., then on exit
!>
!>           (*)  (initial value of H)*U  = U*(final value of H)
!>
!>                where U is an orthogonal matrix.  The final
!>                value of H is upper Hessenberg and quasi-triangular
!>                in rows and columns INFO+1 through IHI.
!>
!>                If INFO > 0 and WANTZ is .TRUE., then on exit
!>
!>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
!>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
!>
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of WANTT.)
!>
!>                If INFO > 0 and WANTZ is .FALSE., then Z is not
!>                accessed.
!> 
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
References:
  K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  929--947, 2002.

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948–973, 2002.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 252 of file dlaqr0.f.

254*
255* -- LAPACK auxiliary routine --
256* -- LAPACK is a software package provided by Univ. of Tennessee, --
257* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
258*
259* .. Scalar Arguments ..
260 INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
261 LOGICAL WANTT, WANTZ
262* ..
263* .. Array Arguments ..
264 DOUBLE PRECISION H( LDH, * ), WI( * ), WORK( * ), WR( * ),
265 $ Z( LDZ, * )
266* ..
267*
268* ================================================================
269*
270* .. Parameters ..
271*
272* ==== Matrices of order NTINY or smaller must be processed by
273* . DLAHQR because of insufficient subdiagonal scratch space.
274* . (This is a hard limit.) ====
275 INTEGER NTINY
276 parameter( ntiny = 15 )
277*
278* ==== Exceptional deflation windows: try to cure rare
279* . slow convergence by varying the size of the
280* . deflation window after KEXNW iterations. ====
281 INTEGER KEXNW
282 parameter( kexnw = 5 )
283*
284* ==== Exceptional shifts: try to cure rare slow convergence
285* . with ad-hoc exceptional shifts every KEXSH iterations.
286* . ====
287 INTEGER KEXSH
288 parameter( kexsh = 6 )
289*
290* ==== The constants WILK1 and WILK2 are used to form the
291* . exceptional shifts. ====
292 DOUBLE PRECISION WILK1, WILK2
293 parameter( wilk1 = 0.75d0, wilk2 = -0.4375d0 )
294 DOUBLE PRECISION ZERO, ONE
295 parameter( zero = 0.0d0, one = 1.0d0 )
296* ..
297* .. Local Scalars ..
298 DOUBLE PRECISION AA, BB, CC, CS, DD, SN, SS, SWAP
299 INTEGER I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
300 $ KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
301 $ LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
302 $ NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
303 LOGICAL SORTED
304 CHARACTER JBCMPZ*2
305* ..
306* .. External Functions ..
307 INTEGER ILAENV
308 EXTERNAL ilaenv
309* ..
310* .. Local Arrays ..
311 DOUBLE PRECISION ZDUM( 1, 1 )
312* ..
313* .. External Subroutines ..
314 EXTERNAL dlacpy, dlahqr, dlanv2, dlaqr3, dlaqr4,
315 $ dlaqr5
316* ..
317* .. Intrinsic Functions ..
318 INTRINSIC abs, dble, int, max, min, mod
319* ..
320* .. Executable Statements ..
321 info = 0
322*
323* ==== Quick return for N = 0: nothing to do. ====
324*
325 IF( n.EQ.0 ) THEN
326 work( 1 ) = one
327 RETURN
328 END IF
329*
330 IF( n.LE.ntiny ) THEN
331*
332* ==== Tiny matrices must use DLAHQR. ====
333*
334 lwkopt = 1
335 IF( lwork.NE.-1 )
336 $ CALL dlahqr( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
337 $ iloz, ihiz, z, ldz, info )
338 ELSE
339*
340* ==== Use small bulge multi-shift QR with aggressive early
341* . deflation on larger-than-tiny matrices. ====
342*
343* ==== Hope for the best. ====
344*
345 info = 0
346*
347* ==== Set up job flags for ILAENV. ====
348*
349 IF( wantt ) THEN
350 jbcmpz( 1: 1 ) = 'S'
351 ELSE
352 jbcmpz( 1: 1 ) = 'E'
353 END IF
354 IF( wantz ) THEN
355 jbcmpz( 2: 2 ) = 'V'
356 ELSE
357 jbcmpz( 2: 2 ) = 'N'
358 END IF
359*
360* ==== NWR = recommended deflation window size. At this
361* . point, N .GT. NTINY = 15, so there is enough
362* . subdiagonal workspace for NWR.GE.2 as required.
363* . (In fact, there is enough subdiagonal space for
364* . NWR.GE.4.) ====
365*
366 nwr = ilaenv( 13, 'DLAQR0', jbcmpz, n, ilo, ihi, lwork )
367 nwr = max( 2, nwr )
368 nwr = min( ihi-ilo+1, ( n-1 ) / 3, nwr )
369*
370* ==== NSR = recommended number of simultaneous shifts.
371* . At this point N .GT. NTINY = 15, so there is at
372* . enough subdiagonal workspace for NSR to be even
373* . and greater than or equal to two as required. ====
374*
375 nsr = ilaenv( 15, 'DLAQR0', jbcmpz, n, ilo, ihi, lwork )
376 nsr = min( nsr, ( n-3 ) / 6, ihi-ilo )
377 nsr = max( 2, nsr-mod( nsr, 2 ) )
378*
379* ==== Estimate optimal workspace ====
380*
381* ==== Workspace query call to DLAQR3 ====
382*
383 CALL dlaqr3( wantt, wantz, n, ilo, ihi, nwr+1, h, ldh, iloz,
384 $ ihiz, z, ldz, ls, ld, wr, wi, h, ldh, n, h, ldh,
385 $ n, h, ldh, work, -1 )
386*
387* ==== Optimal workspace = MAX(DLAQR5, DLAQR3) ====
388*
389 lwkopt = max( 3*nsr / 2, int( work( 1 ) ) )
390*
391* ==== Quick return in case of workspace query. ====
392*
393 IF( lwork.EQ.-1 ) THEN
394 work( 1 ) = dble( lwkopt )
395 RETURN
396 END IF
397*
398* ==== DLAHQR/DLAQR0 crossover point ====
399*
400 nmin = ilaenv( 12, 'DLAQR0', jbcmpz, n, ilo, ihi, lwork )
401 nmin = max( ntiny, nmin )
402*
403* ==== Nibble crossover point ====
404*
405 nibble = ilaenv( 14, 'DLAQR0', jbcmpz, n, ilo, ihi, lwork )
406 nibble = max( 0, nibble )
407*
408* ==== Accumulate reflections during ttswp? Use block
409* . 2-by-2 structure during matrix-matrix multiply? ====
410*
411 kacc22 = ilaenv( 16, 'DLAQR0', jbcmpz, n, ilo, ihi, lwork )
412 kacc22 = max( 0, kacc22 )
413 kacc22 = min( 2, kacc22 )
414*
415* ==== NWMAX = the largest possible deflation window for
416* . which there is sufficient workspace. ====
417*
418 nwmax = min( ( n-1 ) / 3, lwork / 2 )
419 nw = nwmax
420*
421* ==== NSMAX = the Largest number of simultaneous shifts
422* . for which there is sufficient workspace. ====
423*
424 nsmax = min( ( n-3 ) / 6, 2*lwork / 3 )
425 nsmax = nsmax - mod( nsmax, 2 )
426*
427* ==== NDFL: an iteration count restarted at deflation. ====
428*
429 ndfl = 1
430*
431* ==== ITMAX = iteration limit ====
432*
433 itmax = max( 30, 2*kexsh )*max( 10, ( ihi-ilo+1 ) )
434*
435* ==== Last row and column in the active block ====
436*
437 kbot = ihi
438*
439* ==== Main Loop ====
440*
441 DO 80 it = 1, itmax
442*
443* ==== Done when KBOT falls below ILO ====
444*
445 IF( kbot.LT.ilo )
446 $ GO TO 90
447*
448* ==== Locate active block ====
449*
450 DO 10 k = kbot, ilo + 1, -1
451 IF( h( k, k-1 ).EQ.zero )
452 $ GO TO 20
453 10 CONTINUE
454 k = ilo
455 20 CONTINUE
456 ktop = k
457*
458* ==== Select deflation window size:
459* . Typical Case:
460* . If possible and advisable, nibble the entire
461* . active block. If not, use size MIN(NWR,NWMAX)
462* . or MIN(NWR+1,NWMAX) depending upon which has
463* . the smaller corresponding subdiagonal entry
464* . (a heuristic).
465* .
466* . Exceptional Case:
467* . If there have been no deflations in KEXNW or
468* . more iterations, then vary the deflation window
469* . size. At first, because, larger windows are,
470* . in general, more powerful than smaller ones,
471* . rapidly increase the window to the maximum possible.
472* . Then, gradually reduce the window size. ====
473*
474 nh = kbot - ktop + 1
475 nwupbd = min( nh, nwmax )
476 IF( ndfl.LT.kexnw ) THEN
477 nw = min( nwupbd, nwr )
478 ELSE
479 nw = min( nwupbd, 2*nw )
480 END IF
481 IF( nw.LT.nwmax ) THEN
482 IF( nw.GE.nh-1 ) THEN
483 nw = nh
484 ELSE
485 kwtop = kbot - nw + 1
486 IF( abs( h( kwtop, kwtop-1 ) ).GT.
487 $ abs( h( kwtop-1, kwtop-2 ) ) )nw = nw + 1
488 END IF
489 END IF
490 IF( ndfl.LT.kexnw ) THEN
491 ndec = -1
492 ELSE IF( ndec.GE.0 .OR. nw.GE.nwupbd ) THEN
493 ndec = ndec + 1
494 IF( nw-ndec.LT.2 )
495 $ ndec = 0
496 nw = nw - ndec
497 END IF
498*
499* ==== Aggressive early deflation:
500* . split workspace under the subdiagonal into
501* . - an nw-by-nw work array V in the lower
502* . left-hand-corner,
503* . - an NW-by-at-least-NW-but-more-is-better
504* . (NW-by-NHO) horizontal work array along
505* . the bottom edge,
506* . - an at-least-NW-but-more-is-better (NHV-by-NW)
507* . vertical work array along the left-hand-edge.
508* . ====
509*
510 kv = n - nw + 1
511 kt = nw + 1
512 nho = ( n-nw-1 ) - kt + 1
513 kwv = nw + 2
514 nve = ( n-nw ) - kwv + 1
515*
516* ==== Aggressive early deflation ====
517*
518 CALL dlaqr3( wantt, wantz, n, ktop, kbot, nw, h, ldh,
519 $ iloz,
520 $ ihiz, z, ldz, ls, ld, wr, wi, h( kv, 1 ), ldh,
521 $ nho, h( kv, kt ), ldh, nve, h( kwv, 1 ), ldh,
522 $ work, lwork )
523*
524* ==== Adjust KBOT accounting for new deflations. ====
525*
526 kbot = kbot - ld
527*
528* ==== KS points to the shifts. ====
529*
530 ks = kbot - ls + 1
531*
532* ==== Skip an expensive QR sweep if there is a (partly
533* . heuristic) reason to expect that many eigenvalues
534* . will deflate without it. Here, the QR sweep is
535* . skipped if many eigenvalues have just been deflated
536* . or if the remaining active block is small.
537*
538 IF( ( ld.EQ.0 ) .OR. ( ( 100*ld.LE.nw*nibble ) .AND. ( kbot-
539 $ ktop+1.GT.min( nmin, nwmax ) ) ) ) THEN
540*
541* ==== NS = nominal number of simultaneous shifts.
542* . This may be lowered (slightly) if DLAQR3
543* . did not provide that many shifts. ====
544*
545 ns = min( nsmax, nsr, max( 2, kbot-ktop ) )
546 ns = ns - mod( ns, 2 )
547*
548* ==== If there have been no deflations
549* . in a multiple of KEXSH iterations,
550* . then try exceptional shifts.
551* . Otherwise use shifts provided by
552* . DLAQR3 above or from the eigenvalues
553* . of a trailing principal submatrix. ====
554*
555 IF( mod( ndfl, kexsh ).EQ.0 ) THEN
556 ks = kbot - ns + 1
557 DO 30 i = kbot, max( ks+1, ktop+2 ), -2
558 ss = abs( h( i, i-1 ) ) + abs( h( i-1, i-2 ) )
559 aa = wilk1*ss + h( i, i )
560 bb = ss
561 cc = wilk2*ss
562 dd = aa
563 CALL dlanv2( aa, bb, cc, dd, wr( i-1 ),
564 $ wi( i-1 ),
565 $ wr( i ), wi( i ), cs, sn )
566 30 CONTINUE
567 IF( ks.EQ.ktop ) THEN
568 wr( ks+1 ) = h( ks+1, ks+1 )
569 wi( ks+1 ) = zero
570 wr( ks ) = wr( ks+1 )
571 wi( ks ) = wi( ks+1 )
572 END IF
573 ELSE
574*
575* ==== Got NS/2 or fewer shifts? Use DLAQR4 or
576* . DLAHQR on a trailing principal submatrix to
577* . get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
578* . there is enough space below the subdiagonal
579* . to fit an NS-by-NS scratch array.) ====
580*
581 IF( kbot-ks+1.LE.ns / 2 ) THEN
582 ks = kbot - ns + 1
583 kt = n - ns + 1
584 CALL dlacpy( 'A', ns, ns, h( ks, ks ), ldh,
585 $ h( kt, 1 ), ldh )
586 IF( ns.GT.nmin ) THEN
587 CALL dlaqr4( .false., .false., ns, 1, ns,
588 $ h( kt, 1 ), ldh, wr( ks ),
589 $ wi( ks ), 1, 1, zdum, 1, work,
590 $ lwork, inf )
591 ELSE
592 CALL dlahqr( .false., .false., ns, 1, ns,
593 $ h( kt, 1 ), ldh, wr( ks ),
594 $ wi( ks ), 1, 1, zdum, 1, inf )
595 END IF
596 ks = ks + inf
597*
598* ==== In case of a rare QR failure use
599* . eigenvalues of the trailing 2-by-2
600* . principal submatrix. ====
601*
602 IF( ks.GE.kbot ) THEN
603 aa = h( kbot-1, kbot-1 )
604 cc = h( kbot, kbot-1 )
605 bb = h( kbot-1, kbot )
606 dd = h( kbot, kbot )
607 CALL dlanv2( aa, bb, cc, dd, wr( kbot-1 ),
608 $ wi( kbot-1 ), wr( kbot ),
609 $ wi( kbot ), cs, sn )
610 ks = kbot - 1
611 END IF
612 END IF
613*
614 IF( kbot-ks+1.GT.ns ) THEN
615*
616* ==== Sort the shifts (Helps a little)
617* . Bubble sort keeps complex conjugate
618* . pairs together. ====
619*
620 sorted = .false.
621 DO 50 k = kbot, ks + 1, -1
622 IF( sorted )
623 $ GO TO 60
624 sorted = .true.
625 DO 40 i = ks, k - 1
626 IF( abs( wr( i ) )+abs( wi( i ) ).LT.
627 $ abs( wr( i+1 ) )+abs( wi( i+1 ) ) ) THEN
628 sorted = .false.
629*
630 swap = wr( i )
631 wr( i ) = wr( i+1 )
632 wr( i+1 ) = swap
633*
634 swap = wi( i )
635 wi( i ) = wi( i+1 )
636 wi( i+1 ) = swap
637 END IF
638 40 CONTINUE
639 50 CONTINUE
640 60 CONTINUE
641 END IF
642*
643* ==== Shuffle shifts into pairs of real shifts
644* . and pairs of complex conjugate shifts
645* . assuming complex conjugate shifts are
646* . already adjacent to one another. (Yes,
647* . they are.) ====
648*
649 DO 70 i = kbot, ks + 2, -2
650 IF( wi( i ).NE.-wi( i-1 ) ) THEN
651*
652 swap = wr( i )
653 wr( i ) = wr( i-1 )
654 wr( i-1 ) = wr( i-2 )
655 wr( i-2 ) = swap
656*
657 swap = wi( i )
658 wi( i ) = wi( i-1 )
659 wi( i-1 ) = wi( i-2 )
660 wi( i-2 ) = swap
661 END IF
662 70 CONTINUE
663 END IF
664*
665* ==== If there are only two shifts and both are
666* . real, then use only one. ====
667*
668 IF( kbot-ks+1.EQ.2 ) THEN
669 IF( wi( kbot ).EQ.zero ) THEN
670 IF( abs( wr( kbot )-h( kbot, kbot ) ).LT.
671 $ abs( wr( kbot-1 )-h( kbot, kbot ) ) ) THEN
672 wr( kbot-1 ) = wr( kbot )
673 ELSE
674 wr( kbot ) = wr( kbot-1 )
675 END IF
676 END IF
677 END IF
678*
679* ==== Use up to NS of the the smallest magnitude
680* . shifts. If there aren't NS shifts available,
681* . then use them all, possibly dropping one to
682* . make the number of shifts even. ====
683*
684 ns = min( ns, kbot-ks+1 )
685 ns = ns - mod( ns, 2 )
686 ks = kbot - ns + 1
687*
688* ==== Small-bulge multi-shift QR sweep:
689* . split workspace under the subdiagonal into
690* . - a KDU-by-KDU work array U in the lower
691* . left-hand-corner,
692* . - a KDU-by-at-least-KDU-but-more-is-better
693* . (KDU-by-NHo) horizontal work array WH along
694* . the bottom edge,
695* . - and an at-least-KDU-but-more-is-better-by-KDU
696* . (NVE-by-KDU) vertical work WV arrow along
697* . the left-hand-edge. ====
698*
699 kdu = 2*ns
700 ku = n - kdu + 1
701 kwh = kdu + 1
702 nho = ( n-kdu+1-4 ) - ( kdu+1 ) + 1
703 kwv = kdu + 4
704 nve = n - kdu - kwv + 1
705*
706* ==== Small-bulge multi-shift QR sweep ====
707*
708 CALL dlaqr5( wantt, wantz, kacc22, n, ktop, kbot, ns,
709 $ wr( ks ), wi( ks ), h, ldh, iloz, ihiz, z,
710 $ ldz, work, 3, h( ku, 1 ), ldh, nve,
711 $ h( kwv, 1 ), ldh, nho, h( ku, kwh ), ldh )
712 END IF
713*
714* ==== Note progress (or the lack of it). ====
715*
716 IF( ld.GT.0 ) THEN
717 ndfl = 1
718 ELSE
719 ndfl = ndfl + 1
720 END IF
721*
722* ==== End of main loop ====
723 80 CONTINUE
724*
725* ==== Iteration limit exceeded. Set INFO to show where
726* . the problem occurred and exit. ====
727*
728 info = kbot
729 90 CONTINUE
730 END IF
731*
732* ==== Return the optimal value of LWORK. ====
733*
734 work( 1 ) = dble( lwkopt )
735*
736* ==== End of DLAQR0 ====
737*
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
subroutine dlahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition dlahqr.f:205
subroutine dlanv2(a, b, c, d, rt1r, rt1i, rt2r, rt2i, cs, sn)
DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form.
Definition dlanv2.f:125
subroutine dlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sr, si, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
DLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and deflate...
Definition dlaqr3.f:274
subroutine dlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork, info)
DLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition dlaqr4.f:261
subroutine dlaqr5(wantt, wantz, kacc22, n, ktop, kbot, nshfts, sr, si, h, ldh, iloz, ihiz, z, ldz, v, ldv, u, ldu, nv, wv, ldwv, nh, wh, ldwh)
DLAQR5 performs a single small-bulge multi-shift QR sweep.
Definition dlaqr5.f:263
Here is the call graph for this function:
Here is the caller graph for this function: