LAPACK 3.11.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgeevx()

subroutine sgeevx ( character  BALANC,
character  JOBVL,
character  JOBVR,
character  SENSE,
integer  N,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  WR,
real, dimension( * )  WI,
real, dimension( ldvl, * )  VL,
integer  LDVL,
real, dimension( ldvr, * )  VR,
integer  LDVR,
integer  ILO,
integer  IHI,
real, dimension( * )  SCALE,
real  ABNRM,
real, dimension( * )  RCONDE,
real, dimension( * )  RCONDV,
real, dimension( * )  WORK,
integer  LWORK,
integer, dimension( * )  IWORK,
integer  INFO 
)

SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Download SGEEVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
 eigenvalues and, optionally, the left and/or right eigenvectors.

 Optionally also, it computes a balancing transformation to improve
 the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
 SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
 (RCONDE), and reciprocal condition numbers for the right
 eigenvectors (RCONDV).

 The right eigenvector v(j) of A satisfies
                  A * v(j) = lambda(j) * v(j)
 where lambda(j) is its eigenvalue.
 The left eigenvector u(j) of A satisfies
               u(j)**H * A = lambda(j) * u(j)**H
 where u(j)**H denotes the conjugate-transpose of u(j).

 The computed eigenvectors are normalized to have Euclidean norm
 equal to 1 and largest component real.

 Balancing a matrix means permuting the rows and columns to make it
 more nearly upper triangular, and applying a diagonal similarity
 transformation D * A * D**(-1), where D is a diagonal matrix, to
 make its rows and columns closer in norm and the condition numbers
 of its eigenvalues and eigenvectors smaller.  The computed
 reciprocal condition numbers correspond to the balanced matrix.
 Permuting rows and columns will not change the condition numbers
 (in exact arithmetic) but diagonal scaling will.  For further
 explanation of balancing, see section 4.10.2 of the LAPACK
 Users' Guide.
Parameters
[in]BALANC
          BALANC is CHARACTER*1
          Indicates how the input matrix should be diagonally scaled
          and/or permuted to improve the conditioning of its
          eigenvalues.
          = 'N': Do not diagonally scale or permute;
          = 'P': Perform permutations to make the matrix more nearly
                 upper triangular. Do not diagonally scale;
          = 'S': Diagonally scale the matrix, i.e. replace A by
                 D*A*D**(-1), where D is a diagonal matrix chosen
                 to make the rows and columns of A more equal in
                 norm. Do not permute;
          = 'B': Both diagonally scale and permute A.

          Computed reciprocal condition numbers will be for the matrix
          after balancing and/or permuting. Permuting does not change
          condition numbers (in exact arithmetic), but balancing does.
[in]JOBVL
          JOBVL is CHARACTER*1
          = 'N': left eigenvectors of A are not computed;
          = 'V': left eigenvectors of A are computed.
          If SENSE = 'E' or 'B', JOBVL must = 'V'.
[in]JOBVR
          JOBVR is CHARACTER*1
          = 'N': right eigenvectors of A are not computed;
          = 'V': right eigenvectors of A are computed.
          If SENSE = 'E' or 'B', JOBVR must = 'V'.
[in]SENSE
          SENSE is CHARACTER*1
          Determines which reciprocal condition numbers are computed.
          = 'N': None are computed;
          = 'E': Computed for eigenvalues only;
          = 'V': Computed for right eigenvectors only;
          = 'B': Computed for eigenvalues and right eigenvectors.

          If SENSE = 'E' or 'B', both left and right eigenvectors
          must also be computed (JOBVL = 'V' and JOBVR = 'V').
[in]N
          N is INTEGER
          The order of the matrix A. N >= 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the N-by-N matrix A.
          On exit, A has been overwritten.  If JOBVL = 'V' or
          JOBVR = 'V', A contains the real Schur form of the balanced
          version of the input matrix A.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).
[out]WR
          WR is REAL array, dimension (N)
[out]WI
          WI is REAL array, dimension (N)
          WR and WI contain the real and imaginary parts,
          respectively, of the computed eigenvalues.  Complex
          conjugate pairs of eigenvalues will appear consecutively
          with the eigenvalue having the positive imaginary part
          first.
[out]VL
          VL is REAL array, dimension (LDVL,N)
          If JOBVL = 'V', the left eigenvectors u(j) are stored one
          after another in the columns of VL, in the same order
          as their eigenvalues.
          If JOBVL = 'N', VL is not referenced.
          If the j-th eigenvalue is real, then u(j) = VL(:,j),
          the j-th column of VL.
          If the j-th and (j+1)-st eigenvalues form a complex
          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
          u(j+1) = VL(:,j) - i*VL(:,j+1).
[in]LDVL
          LDVL is INTEGER
          The leading dimension of the array VL.  LDVL >= 1; if
          JOBVL = 'V', LDVL >= N.
[out]VR
          VR is REAL array, dimension (LDVR,N)
          If JOBVR = 'V', the right eigenvectors v(j) are stored one
          after another in the columns of VR, in the same order
          as their eigenvalues.
          If JOBVR = 'N', VR is not referenced.
          If the j-th eigenvalue is real, then v(j) = VR(:,j),
          the j-th column of VR.
          If the j-th and (j+1)-st eigenvalues form a complex
          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
          v(j+1) = VR(:,j) - i*VR(:,j+1).
[in]LDVR
          LDVR is INTEGER
          The leading dimension of the array VR.  LDVR >= 1, and if
          JOBVR = 'V', LDVR >= N.
[out]ILO
          ILO is INTEGER
[out]IHI
          IHI is INTEGER
          ILO and IHI are integer values determined when A was
          balanced.  The balanced A(i,j) = 0 if I > J and
          J = 1,...,ILO-1 or I = IHI+1,...,N.
[out]SCALE
          SCALE is REAL array, dimension (N)
          Details of the permutations and scaling factors applied
          when balancing A.  If P(j) is the index of the row and column
          interchanged with row and column j, and D(j) is the scaling
          factor applied to row and column j, then
          SCALE(J) = P(J),    for J = 1,...,ILO-1
                   = D(J),    for J = ILO,...,IHI
                   = P(J)     for J = IHI+1,...,N.
          The order in which the interchanges are made is N to IHI+1,
          then 1 to ILO-1.
[out]ABNRM
          ABNRM is REAL
          The one-norm of the balanced matrix (the maximum
          of the sum of absolute values of elements of any column).
[out]RCONDE
          RCONDE is REAL array, dimension (N)
          RCONDE(j) is the reciprocal condition number of the j-th
          eigenvalue.
[out]RCONDV
          RCONDV is REAL array, dimension (N)
          RCONDV(j) is the reciprocal condition number of the j-th
          right eigenvector.
[out]WORK
          WORK is REAL array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.   If SENSE = 'N' or 'E',
          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
          For good performance, LWORK must generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (2*N-2)
          If SENSE = 'N' or 'E', not referenced.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, the QR algorithm failed to compute all the
                eigenvalues, and no eigenvectors or condition numbers
                have been computed; elements 1:ILO-1 and i+1:N of WR
                and WI contain eigenvalues which have converged.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 303 of file sgeevx.f.

306 implicit none
307*
308* -- LAPACK driver routine --
309* -- LAPACK is a software package provided by Univ. of Tennessee, --
310* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
311*
312* .. Scalar Arguments ..
313 CHARACTER BALANC, JOBVL, JOBVR, SENSE
314 INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
315 REAL ABNRM
316* ..
317* .. Array Arguments ..
318 INTEGER IWORK( * )
319 REAL A( LDA, * ), RCONDE( * ), RCONDV( * ),
320 $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
321 $ WI( * ), WORK( * ), WR( * )
322* ..
323*
324* =====================================================================
325*
326* .. Parameters ..
327 REAL ZERO, ONE
328 parameter( zero = 0.0e0, one = 1.0e0 )
329* ..
330* .. Local Scalars ..
331 LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
332 $ WNTSNN, WNTSNV
333 CHARACTER JOB, SIDE
334 INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
335 $ LWORK_TREVC, MAXWRK, MINWRK, NOUT
336 REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
337 $ SN
338* ..
339* .. Local Arrays ..
340 LOGICAL SELECT( 1 )
341 REAL DUM( 1 )
342* ..
343* .. External Subroutines ..
344 EXTERNAL sgebak, sgebal, sgehrd, shseqr, slabad, slacpy,
346 $ strsna, xerbla
347* ..
348* .. External Functions ..
349 LOGICAL LSAME
350 INTEGER ISAMAX, ILAENV
351 REAL SLAMCH, SLANGE, SLAPY2, SNRM2
352 EXTERNAL lsame, isamax, ilaenv, slamch, slange, slapy2,
353 $ snrm2
354* ..
355* .. Intrinsic Functions ..
356 INTRINSIC max, sqrt
357* ..
358* .. Executable Statements ..
359*
360* Test the input arguments
361*
362 info = 0
363 lquery = ( lwork.EQ.-1 )
364 wantvl = lsame( jobvl, 'V' )
365 wantvr = lsame( jobvr, 'V' )
366 wntsnn = lsame( sense, 'N' )
367 wntsne = lsame( sense, 'E' )
368 wntsnv = lsame( sense, 'V' )
369 wntsnb = lsame( sense, 'B' )
370 IF( .NOT.( lsame( balanc, 'N' ) .OR. lsame( balanc, 'S' )
371 $ .OR. lsame( balanc, 'P' ) .OR. lsame( balanc, 'B' ) ) )
372 $ THEN
373 info = -1
374 ELSE IF( ( .NOT.wantvl ) .AND. ( .NOT.lsame( jobvl, 'N' ) ) ) THEN
375 info = -2
376 ELSE IF( ( .NOT.wantvr ) .AND. ( .NOT.lsame( jobvr, 'N' ) ) ) THEN
377 info = -3
378 ELSE IF( .NOT.( wntsnn .OR. wntsne .OR. wntsnb .OR. wntsnv ) .OR.
379 $ ( ( wntsne .OR. wntsnb ) .AND. .NOT.( wantvl .AND.
380 $ wantvr ) ) ) THEN
381 info = -4
382 ELSE IF( n.LT.0 ) THEN
383 info = -5
384 ELSE IF( lda.LT.max( 1, n ) ) THEN
385 info = -7
386 ELSE IF( ldvl.LT.1 .OR. ( wantvl .AND. ldvl.LT.n ) ) THEN
387 info = -11
388 ELSE IF( ldvr.LT.1 .OR. ( wantvr .AND. ldvr.LT.n ) ) THEN
389 info = -13
390 END IF
391*
392* Compute workspace
393* (Note: Comments in the code beginning "Workspace:" describe the
394* minimal amount of workspace needed at that point in the code,
395* as well as the preferred amount for good performance.
396* NB refers to the optimal block size for the immediately
397* following subroutine, as returned by ILAENV.
398* HSWORK refers to the workspace preferred by SHSEQR, as
399* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
400* the worst case.)
401*
402 IF( info.EQ.0 ) THEN
403 IF( n.EQ.0 ) THEN
404 minwrk = 1
405 maxwrk = 1
406 ELSE
407 maxwrk = n + n*ilaenv( 1, 'SGEHRD', ' ', n, 1, n, 0 )
408*
409 IF( wantvl ) THEN
410 CALL strevc3( 'L', 'B', SELECT, n, a, lda,
411 $ vl, ldvl, vr, ldvr,
412 $ n, nout, work, -1, ierr )
413 lwork_trevc = int( work(1) )
414 maxwrk = max( maxwrk, n + lwork_trevc )
415 CALL shseqr( 'S', 'V', n, 1, n, a, lda, wr, wi, vl, ldvl,
416 $ work, -1, info )
417 ELSE IF( wantvr ) THEN
418 CALL strevc3( 'R', 'B', SELECT, n, a, lda,
419 $ vl, ldvl, vr, ldvr,
420 $ n, nout, work, -1, ierr )
421 lwork_trevc = int( work(1) )
422 maxwrk = max( maxwrk, n + lwork_trevc )
423 CALL shseqr( 'S', 'V', n, 1, n, a, lda, wr, wi, vr, ldvr,
424 $ work, -1, info )
425 ELSE
426 IF( wntsnn ) THEN
427 CALL shseqr( 'E', 'N', n, 1, n, a, lda, wr, wi, vr,
428 $ ldvr, work, -1, info )
429 ELSE
430 CALL shseqr( 'S', 'N', n, 1, n, a, lda, wr, wi, vr,
431 $ ldvr, work, -1, info )
432 END IF
433 END IF
434 hswork = int( work(1) )
435*
436 IF( ( .NOT.wantvl ) .AND. ( .NOT.wantvr ) ) THEN
437 minwrk = 2*n
438 IF( .NOT.wntsnn )
439 $ minwrk = max( minwrk, n*n+6*n )
440 maxwrk = max( maxwrk, hswork )
441 IF( .NOT.wntsnn )
442 $ maxwrk = max( maxwrk, n*n + 6*n )
443 ELSE
444 minwrk = 3*n
445 IF( ( .NOT.wntsnn ) .AND. ( .NOT.wntsne ) )
446 $ minwrk = max( minwrk, n*n + 6*n )
447 maxwrk = max( maxwrk, hswork )
448 maxwrk = max( maxwrk, n + ( n - 1 )*ilaenv( 1, 'SORGHR',
449 $ ' ', n, 1, n, -1 ) )
450 IF( ( .NOT.wntsnn ) .AND. ( .NOT.wntsne ) )
451 $ maxwrk = max( maxwrk, n*n + 6*n )
452 maxwrk = max( maxwrk, 3*n )
453 END IF
454 maxwrk = max( maxwrk, minwrk )
455 END IF
456 work( 1 ) = maxwrk
457*
458 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
459 info = -21
460 END IF
461 END IF
462*
463 IF( info.NE.0 ) THEN
464 CALL xerbla( 'SGEEVX', -info )
465 RETURN
466 ELSE IF( lquery ) THEN
467 RETURN
468 END IF
469*
470* Quick return if possible
471*
472 IF( n.EQ.0 )
473 $ RETURN
474*
475* Get machine constants
476*
477 eps = slamch( 'P' )
478 smlnum = slamch( 'S' )
479 bignum = one / smlnum
480 CALL slabad( smlnum, bignum )
481 smlnum = sqrt( smlnum ) / eps
482 bignum = one / smlnum
483*
484* Scale A if max element outside range [SMLNUM,BIGNUM]
485*
486 icond = 0
487 anrm = slange( 'M', n, n, a, lda, dum )
488 scalea = .false.
489 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
490 scalea = .true.
491 cscale = smlnum
492 ELSE IF( anrm.GT.bignum ) THEN
493 scalea = .true.
494 cscale = bignum
495 END IF
496 IF( scalea )
497 $ CALL slascl( 'G', 0, 0, anrm, cscale, n, n, a, lda, ierr )
498*
499* Balance the matrix and compute ABNRM
500*
501 CALL sgebal( balanc, n, a, lda, ilo, ihi, scale, ierr )
502 abnrm = slange( '1', n, n, a, lda, dum )
503 IF( scalea ) THEN
504 dum( 1 ) = abnrm
505 CALL slascl( 'G', 0, 0, cscale, anrm, 1, 1, dum, 1, ierr )
506 abnrm = dum( 1 )
507 END IF
508*
509* Reduce to upper Hessenberg form
510* (Workspace: need 2*N, prefer N+N*NB)
511*
512 itau = 1
513 iwrk = itau + n
514 CALL sgehrd( n, ilo, ihi, a, lda, work( itau ), work( iwrk ),
515 $ lwork-iwrk+1, ierr )
516*
517 IF( wantvl ) THEN
518*
519* Want left eigenvectors
520* Copy Householder vectors to VL
521*
522 side = 'L'
523 CALL slacpy( 'L', n, n, a, lda, vl, ldvl )
524*
525* Generate orthogonal matrix in VL
526* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
527*
528 CALL sorghr( n, ilo, ihi, vl, ldvl, work( itau ), work( iwrk ),
529 $ lwork-iwrk+1, ierr )
530*
531* Perform QR iteration, accumulating Schur vectors in VL
532* (Workspace: need 1, prefer HSWORK (see comments) )
533*
534 iwrk = itau
535 CALL shseqr( 'S', 'V', n, ilo, ihi, a, lda, wr, wi, vl, ldvl,
536 $ work( iwrk ), lwork-iwrk+1, info )
537*
538 IF( wantvr ) THEN
539*
540* Want left and right eigenvectors
541* Copy Schur vectors to VR
542*
543 side = 'B'
544 CALL slacpy( 'F', n, n, vl, ldvl, vr, ldvr )
545 END IF
546*
547 ELSE IF( wantvr ) THEN
548*
549* Want right eigenvectors
550* Copy Householder vectors to VR
551*
552 side = 'R'
553 CALL slacpy( 'L', n, n, a, lda, vr, ldvr )
554*
555* Generate orthogonal matrix in VR
556* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
557*
558 CALL sorghr( n, ilo, ihi, vr, ldvr, work( itau ), work( iwrk ),
559 $ lwork-iwrk+1, ierr )
560*
561* Perform QR iteration, accumulating Schur vectors in VR
562* (Workspace: need 1, prefer HSWORK (see comments) )
563*
564 iwrk = itau
565 CALL shseqr( 'S', 'V', n, ilo, ihi, a, lda, wr, wi, vr, ldvr,
566 $ work( iwrk ), lwork-iwrk+1, info )
567*
568 ELSE
569*
570* Compute eigenvalues only
571* If condition numbers desired, compute Schur form
572*
573 IF( wntsnn ) THEN
574 job = 'E'
575 ELSE
576 job = 'S'
577 END IF
578*
579* (Workspace: need 1, prefer HSWORK (see comments) )
580*
581 iwrk = itau
582 CALL shseqr( job, 'N', n, ilo, ihi, a, lda, wr, wi, vr, ldvr,
583 $ work( iwrk ), lwork-iwrk+1, info )
584 END IF
585*
586* If INFO .NE. 0 from SHSEQR, then quit
587*
588 IF( info.NE.0 )
589 $ GO TO 50
590*
591 IF( wantvl .OR. wantvr ) THEN
592*
593* Compute left and/or right eigenvectors
594* (Workspace: need 3*N, prefer N + 2*N*NB)
595*
596 CALL strevc3( side, 'B', SELECT, n, a, lda, vl, ldvl, vr, ldvr,
597 $ n, nout, work( iwrk ), lwork-iwrk+1, ierr )
598 END IF
599*
600* Compute condition numbers if desired
601* (Workspace: need N*N+6*N unless SENSE = 'E')
602*
603 IF( .NOT.wntsnn ) THEN
604 CALL strsna( sense, 'A', SELECT, n, a, lda, vl, ldvl, vr, ldvr,
605 $ rconde, rcondv, n, nout, work( iwrk ), n, iwork,
606 $ icond )
607 END IF
608*
609 IF( wantvl ) THEN
610*
611* Undo balancing of left eigenvectors
612*
613 CALL sgebak( balanc, 'L', n, ilo, ihi, scale, n, vl, ldvl,
614 $ ierr )
615*
616* Normalize left eigenvectors and make largest component real
617*
618 DO 20 i = 1, n
619 IF( wi( i ).EQ.zero ) THEN
620 scl = one / snrm2( n, vl( 1, i ), 1 )
621 CALL sscal( n, scl, vl( 1, i ), 1 )
622 ELSE IF( wi( i ).GT.zero ) THEN
623 scl = one / slapy2( snrm2( n, vl( 1, i ), 1 ),
624 $ snrm2( n, vl( 1, i+1 ), 1 ) )
625 CALL sscal( n, scl, vl( 1, i ), 1 )
626 CALL sscal( n, scl, vl( 1, i+1 ), 1 )
627 DO 10 k = 1, n
628 work( k ) = vl( k, i )**2 + vl( k, i+1 )**2
629 10 CONTINUE
630 k = isamax( n, work, 1 )
631 CALL slartg( vl( k, i ), vl( k, i+1 ), cs, sn, r )
632 CALL srot( n, vl( 1, i ), 1, vl( 1, i+1 ), 1, cs, sn )
633 vl( k, i+1 ) = zero
634 END IF
635 20 CONTINUE
636 END IF
637*
638 IF( wantvr ) THEN
639*
640* Undo balancing of right eigenvectors
641*
642 CALL sgebak( balanc, 'R', n, ilo, ihi, scale, n, vr, ldvr,
643 $ ierr )
644*
645* Normalize right eigenvectors and make largest component real
646*
647 DO 40 i = 1, n
648 IF( wi( i ).EQ.zero ) THEN
649 scl = one / snrm2( n, vr( 1, i ), 1 )
650 CALL sscal( n, scl, vr( 1, i ), 1 )
651 ELSE IF( wi( i ).GT.zero ) THEN
652 scl = one / slapy2( snrm2( n, vr( 1, i ), 1 ),
653 $ snrm2( n, vr( 1, i+1 ), 1 ) )
654 CALL sscal( n, scl, vr( 1, i ), 1 )
655 CALL sscal( n, scl, vr( 1, i+1 ), 1 )
656 DO 30 k = 1, n
657 work( k ) = vr( k, i )**2 + vr( k, i+1 )**2
658 30 CONTINUE
659 k = isamax( n, work, 1 )
660 CALL slartg( vr( k, i ), vr( k, i+1 ), cs, sn, r )
661 CALL srot( n, vr( 1, i ), 1, vr( 1, i+1 ), 1, cs, sn )
662 vr( k, i+1 ) = zero
663 END IF
664 40 CONTINUE
665 END IF
666*
667* Undo scaling if necessary
668*
669 50 CONTINUE
670 IF( scalea ) THEN
671 CALL slascl( 'G', 0, 0, cscale, anrm, n-info, 1, wr( info+1 ),
672 $ max( n-info, 1 ), ierr )
673 CALL slascl( 'G', 0, 0, cscale, anrm, n-info, 1, wi( info+1 ),
674 $ max( n-info, 1 ), ierr )
675 IF( info.EQ.0 ) THEN
676 IF( ( wntsnv .OR. wntsnb ) .AND. icond.EQ.0 )
677 $ CALL slascl( 'G', 0, 0, cscale, anrm, n, 1, rcondv, n,
678 $ ierr )
679 ELSE
680 CALL slascl( 'G', 0, 0, cscale, anrm, ilo-1, 1, wr, n,
681 $ ierr )
682 CALL slascl( 'G', 0, 0, cscale, anrm, ilo-1, 1, wi, n,
683 $ ierr )
684 END IF
685 END IF
686*
687 work( 1 ) = maxwrk
688 RETURN
689*
690* End of SGEEVX
691*
subroutine slabad(SMALL, LARGE)
SLABAD
Definition: slabad.f:74
subroutine slascl(TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition: slascl.f:143
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
subroutine slartg(f, g, c, s, r)
SLARTG generates a plane rotation with real cosine and real sine.
Definition: slartg.f90:111
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
real function slapy2(X, Y)
SLAPY2 returns sqrt(x2+y2).
Definition: slapy2.f:63
integer function isamax(N, SX, INCX)
ISAMAX
Definition: isamax.f:71
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function slange(NORM, M, N, A, LDA, WORK)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: slange.f:114
subroutine sgebal(JOB, N, A, LDA, ILO, IHI, SCALE, INFO)
SGEBAL
Definition: sgebal.f:160
subroutine sgehrd(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
SGEHRD
Definition: sgehrd.f:167
subroutine sgebak(JOB, SIDE, N, ILO, IHI, SCALE, M, V, LDV, INFO)
SGEBAK
Definition: sgebak.f:130
subroutine sorghr(N, ILO, IHI, A, LDA, TAU, WORK, LWORK, INFO)
SORGHR
Definition: sorghr.f:126
subroutine strevc3(SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, MM, M, WORK, LWORK, INFO)
STREVC3
Definition: strevc3.f:237
subroutine strsna(JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR, LDVR, S, SEP, MM, M, WORK, LDWORK, IWORK, INFO)
STRSNA
Definition: strsna.f:265
subroutine shseqr(JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z, LDZ, WORK, LWORK, INFO)
SHSEQR
Definition: shseqr.f:316
subroutine srot(N, SX, INCX, SY, INCY, C, S)
SROT
Definition: srot.f:92
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:79
real(wp) function snrm2(n, x, incx)
SNRM2
Definition: snrm2.f90:89
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: