LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
csptrs.f
Go to the documentation of this file.
1 *> \brief \b CSPTRS
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download CSPTRS + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptrs.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptrs.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptrs.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE CSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
22 *
23 * .. Scalar Arguments ..
24 * CHARACTER UPLO
25 * INTEGER INFO, LDB, N, NRHS
26 * ..
27 * .. Array Arguments ..
28 * INTEGER IPIV( * )
29 * COMPLEX AP( * ), B( LDB, * )
30 * ..
31 *
32 *
33 *> \par Purpose:
34 * =============
35 *>
36 *> \verbatim
37 *>
38 *> CSPTRS solves a system of linear equations A*X = B with a complex
39 *> symmetric matrix A stored in packed format using the factorization
40 *> A = U*D*U**T or A = L*D*L**T computed by CSPTRF.
41 *> \endverbatim
42 *
43 * Arguments:
44 * ==========
45 *
46 *> \param[in] UPLO
47 *> \verbatim
48 *> UPLO is CHARACTER*1
49 *> Specifies whether the details of the factorization are stored
50 *> as an upper or lower triangular matrix.
51 *> = 'U': Upper triangular, form is A = U*D*U**T;
52 *> = 'L': Lower triangular, form is A = L*D*L**T.
53 *> \endverbatim
54 *>
55 *> \param[in] N
56 *> \verbatim
57 *> N is INTEGER
58 *> The order of the matrix A. N >= 0.
59 *> \endverbatim
60 *>
61 *> \param[in] NRHS
62 *> \verbatim
63 *> NRHS is INTEGER
64 *> The number of right hand sides, i.e., the number of columns
65 *> of the matrix B. NRHS >= 0.
66 *> \endverbatim
67 *>
68 *> \param[in] AP
69 *> \verbatim
70 *> AP is COMPLEX array, dimension (N*(N+1)/2)
71 *> The block diagonal matrix D and the multipliers used to
72 *> obtain the factor U or L as computed by CSPTRF, stored as a
73 *> packed triangular matrix.
74 *> \endverbatim
75 *>
76 *> \param[in] IPIV
77 *> \verbatim
78 *> IPIV is INTEGER array, dimension (N)
79 *> Details of the interchanges and the block structure of D
80 *> as determined by CSPTRF.
81 *> \endverbatim
82 *>
83 *> \param[in,out] B
84 *> \verbatim
85 *> B is COMPLEX array, dimension (LDB,NRHS)
86 *> On entry, the right hand side matrix B.
87 *> On exit, the solution matrix X.
88 *> \endverbatim
89 *>
90 *> \param[in] LDB
91 *> \verbatim
92 *> LDB is INTEGER
93 *> The leading dimension of the array B. LDB >= max(1,N).
94 *> \endverbatim
95 *>
96 *> \param[out] INFO
97 *> \verbatim
98 *> INFO is INTEGER
99 *> = 0: successful exit
100 *> < 0: if INFO = -i, the i-th argument had an illegal value
101 *> \endverbatim
102 *
103 * Authors:
104 * ========
105 *
106 *> \author Univ. of Tennessee
107 *> \author Univ. of California Berkeley
108 *> \author Univ. of Colorado Denver
109 *> \author NAG Ltd.
110 *
111 *> \ingroup complexOTHERcomputational
112 *
113 * =====================================================================
114  SUBROUTINE csptrs( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
115 *
116 * -- LAPACK computational routine --
117 * -- LAPACK is a software package provided by Univ. of Tennessee, --
118 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
119 *
120 * .. Scalar Arguments ..
121  CHARACTER UPLO
122  INTEGER INFO, LDB, N, NRHS
123 * ..
124 * .. Array Arguments ..
125  INTEGER IPIV( * )
126  COMPLEX AP( * ), B( LDB, * )
127 * ..
128 *
129 * =====================================================================
130 *
131 * .. Parameters ..
132  COMPLEX ONE
133  parameter( one = ( 1.0e+0, 0.0e+0 ) )
134 * ..
135 * .. Local Scalars ..
136  LOGICAL UPPER
137  INTEGER J, K, KC, KP
138  COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM
139 * ..
140 * .. External Functions ..
141  LOGICAL LSAME
142  EXTERNAL lsame
143 * ..
144 * .. External Subroutines ..
145  EXTERNAL cgemv, cgeru, cscal, cswap, xerbla
146 * ..
147 * .. Intrinsic Functions ..
148  INTRINSIC max
149 * ..
150 * .. Executable Statements ..
151 *
152  info = 0
153  upper = lsame( uplo, 'U' )
154  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
155  info = -1
156  ELSE IF( n.LT.0 ) THEN
157  info = -2
158  ELSE IF( nrhs.LT.0 ) THEN
159  info = -3
160  ELSE IF( ldb.LT.max( 1, n ) ) THEN
161  info = -7
162  END IF
163  IF( info.NE.0 ) THEN
164  CALL xerbla( 'CSPTRS', -info )
165  RETURN
166  END IF
167 *
168 * Quick return if possible
169 *
170  IF( n.EQ.0 .OR. nrhs.EQ.0 )
171  $ RETURN
172 *
173  IF( upper ) THEN
174 *
175 * Solve A*X = B, where A = U*D*U**T.
176 *
177 * First solve U*D*X = B, overwriting B with X.
178 *
179 * K is the main loop index, decreasing from N to 1 in steps of
180 * 1 or 2, depending on the size of the diagonal blocks.
181 *
182  k = n
183  kc = n*( n+1 ) / 2 + 1
184  10 CONTINUE
185 *
186 * If K < 1, exit from loop.
187 *
188  IF( k.LT.1 )
189  $ GO TO 30
190 *
191  kc = kc - k
192  IF( ipiv( k ).GT.0 ) THEN
193 *
194 * 1 x 1 diagonal block
195 *
196 * Interchange rows K and IPIV(K).
197 *
198  kp = ipiv( k )
199  IF( kp.NE.k )
200  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
201 *
202 * Multiply by inv(U(K)), where U(K) is the transformation
203 * stored in column K of A.
204 *
205  CALL cgeru( k-1, nrhs, -one, ap( kc ), 1, b( k, 1 ), ldb,
206  $ b( 1, 1 ), ldb )
207 *
208 * Multiply by the inverse of the diagonal block.
209 *
210  CALL cscal( nrhs, one / ap( kc+k-1 ), b( k, 1 ), ldb )
211  k = k - 1
212  ELSE
213 *
214 * 2 x 2 diagonal block
215 *
216 * Interchange rows K-1 and -IPIV(K).
217 *
218  kp = -ipiv( k )
219  IF( kp.NE.k-1 )
220  $ CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
221 *
222 * Multiply by inv(U(K)), where U(K) is the transformation
223 * stored in columns K-1 and K of A.
224 *
225  CALL cgeru( k-2, nrhs, -one, ap( kc ), 1, b( k, 1 ), ldb,
226  $ b( 1, 1 ), ldb )
227  CALL cgeru( k-2, nrhs, -one, ap( kc-( k-1 ) ), 1,
228  $ b( k-1, 1 ), ldb, b( 1, 1 ), ldb )
229 *
230 * Multiply by the inverse of the diagonal block.
231 *
232  akm1k = ap( kc+k-2 )
233  akm1 = ap( kc-1 ) / akm1k
234  ak = ap( kc+k-1 ) / akm1k
235  denom = akm1*ak - one
236  DO 20 j = 1, nrhs
237  bkm1 = b( k-1, j ) / akm1k
238  bk = b( k, j ) / akm1k
239  b( k-1, j ) = ( ak*bkm1-bk ) / denom
240  b( k, j ) = ( akm1*bk-bkm1 ) / denom
241  20 CONTINUE
242  kc = kc - k + 1
243  k = k - 2
244  END IF
245 *
246  GO TO 10
247  30 CONTINUE
248 *
249 * Next solve U**T*X = B, overwriting B with X.
250 *
251 * K is the main loop index, increasing from 1 to N in steps of
252 * 1 or 2, depending on the size of the diagonal blocks.
253 *
254  k = 1
255  kc = 1
256  40 CONTINUE
257 *
258 * If K > N, exit from loop.
259 *
260  IF( k.GT.n )
261  $ GO TO 50
262 *
263  IF( ipiv( k ).GT.0 ) THEN
264 *
265 * 1 x 1 diagonal block
266 *
267 * Multiply by inv(U**T(K)), where U(K) is the transformation
268 * stored in column K of A.
269 *
270  CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb, ap( kc ),
271  $ 1, one, b( k, 1 ), ldb )
272 *
273 * Interchange rows K and IPIV(K).
274 *
275  kp = ipiv( k )
276  IF( kp.NE.k )
277  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
278  kc = kc + k
279  k = k + 1
280  ELSE
281 *
282 * 2 x 2 diagonal block
283 *
284 * Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
285 * stored in columns K and K+1 of A.
286 *
287  CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb, ap( kc ),
288  $ 1, one, b( k, 1 ), ldb )
289  CALL cgemv( 'Transpose', k-1, nrhs, -one, b, ldb,
290  $ ap( kc+k ), 1, one, b( k+1, 1 ), ldb )
291 *
292 * Interchange rows K and -IPIV(K).
293 *
294  kp = -ipiv( k )
295  IF( kp.NE.k )
296  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
297  kc = kc + 2*k + 1
298  k = k + 2
299  END IF
300 *
301  GO TO 40
302  50 CONTINUE
303 *
304  ELSE
305 *
306 * Solve A*X = B, where A = L*D*L**T.
307 *
308 * First solve L*D*X = B, overwriting B with X.
309 *
310 * K is the main loop index, increasing from 1 to N in steps of
311 * 1 or 2, depending on the size of the diagonal blocks.
312 *
313  k = 1
314  kc = 1
315  60 CONTINUE
316 *
317 * If K > N, exit from loop.
318 *
319  IF( k.GT.n )
320  $ GO TO 80
321 *
322  IF( ipiv( k ).GT.0 ) THEN
323 *
324 * 1 x 1 diagonal block
325 *
326 * Interchange rows K and IPIV(K).
327 *
328  kp = ipiv( k )
329  IF( kp.NE.k )
330  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
331 *
332 * Multiply by inv(L(K)), where L(K) is the transformation
333 * stored in column K of A.
334 *
335  IF( k.LT.n )
336  $ CALL cgeru( n-k, nrhs, -one, ap( kc+1 ), 1, b( k, 1 ),
337  $ ldb, b( k+1, 1 ), ldb )
338 *
339 * Multiply by the inverse of the diagonal block.
340 *
341  CALL cscal( nrhs, one / ap( kc ), b( k, 1 ), ldb )
342  kc = kc + n - k + 1
343  k = k + 1
344  ELSE
345 *
346 * 2 x 2 diagonal block
347 *
348 * Interchange rows K+1 and -IPIV(K).
349 *
350  kp = -ipiv( k )
351  IF( kp.NE.k+1 )
352  $ CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
353 *
354 * Multiply by inv(L(K)), where L(K) is the transformation
355 * stored in columns K and K+1 of A.
356 *
357  IF( k.LT.n-1 ) THEN
358  CALL cgeru( n-k-1, nrhs, -one, ap( kc+2 ), 1, b( k, 1 ),
359  $ ldb, b( k+2, 1 ), ldb )
360  CALL cgeru( n-k-1, nrhs, -one, ap( kc+n-k+2 ), 1,
361  $ b( k+1, 1 ), ldb, b( k+2, 1 ), ldb )
362  END IF
363 *
364 * Multiply by the inverse of the diagonal block.
365 *
366  akm1k = ap( kc+1 )
367  akm1 = ap( kc ) / akm1k
368  ak = ap( kc+n-k+1 ) / akm1k
369  denom = akm1*ak - one
370  DO 70 j = 1, nrhs
371  bkm1 = b( k, j ) / akm1k
372  bk = b( k+1, j ) / akm1k
373  b( k, j ) = ( ak*bkm1-bk ) / denom
374  b( k+1, j ) = ( akm1*bk-bkm1 ) / denom
375  70 CONTINUE
376  kc = kc + 2*( n-k ) + 1
377  k = k + 2
378  END IF
379 *
380  GO TO 60
381  80 CONTINUE
382 *
383 * Next solve L**T*X = B, overwriting B with X.
384 *
385 * K is the main loop index, decreasing from N to 1 in steps of
386 * 1 or 2, depending on the size of the diagonal blocks.
387 *
388  k = n
389  kc = n*( n+1 ) / 2 + 1
390  90 CONTINUE
391 *
392 * If K < 1, exit from loop.
393 *
394  IF( k.LT.1 )
395  $ GO TO 100
396 *
397  kc = kc - ( n-k+1 )
398  IF( ipiv( k ).GT.0 ) THEN
399 *
400 * 1 x 1 diagonal block
401 *
402 * Multiply by inv(L**T(K)), where L(K) is the transformation
403 * stored in column K of A.
404 *
405  IF( k.LT.n )
406  $ CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
407  $ ldb, ap( kc+1 ), 1, one, b( k, 1 ), ldb )
408 *
409 * Interchange rows K and IPIV(K).
410 *
411  kp = ipiv( k )
412  IF( kp.NE.k )
413  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
414  k = k - 1
415  ELSE
416 *
417 * 2 x 2 diagonal block
418 *
419 * Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
420 * stored in columns K-1 and K of A.
421 *
422  IF( k.LT.n ) THEN
423  CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
424  $ ldb, ap( kc+1 ), 1, one, b( k, 1 ), ldb )
425  CALL cgemv( 'Transpose', n-k, nrhs, -one, b( k+1, 1 ),
426  $ ldb, ap( kc-( n-k ) ), 1, one, b( k-1, 1 ),
427  $ ldb )
428  END IF
429 *
430 * Interchange rows K and -IPIV(K).
431 *
432  kp = -ipiv( k )
433  IF( kp.NE.k )
434  $ CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
435  kc = kc - ( n-k+2 )
436  k = k - 2
437  END IF
438 *
439  GO TO 90
440  100 CONTINUE
441  END IF
442 *
443  RETURN
444 *
445 * End of CSPTRS
446 *
447  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
Definition: cswap.f:81
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:78
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
Definition: cgemv.f:158
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
Definition: cgeru.f:130
subroutine csptrs(UPLO, N, NRHS, AP, IPIV, B, LDB, INFO)
CSPTRS
Definition: csptrs.f:115