LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ cunbdb1()

 subroutine cunbdb1 ( integer M, integer P, integer Q, complex, dimension(ldx11,*) X11, integer LDX11, complex, dimension(ldx21,*) X21, integer LDX21, real, dimension(*) THETA, real, dimension(*) PHI, complex, dimension(*) TAUP1, complex, dimension(*) TAUP2, complex, dimension(*) TAUQ1, complex, dimension(*) WORK, integer LWORK, integer INFO )

CUNBDB1

Purpose:
``` CUNBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
matrix X with orthonomal columns:

[ B11 ]
[ X11 ]   [ P1 |    ] [  0  ]
[-----] = [---------] [-----] Q1**T .
[ X21 ]   [    | P2 ] [ B21 ]
[  0  ]

X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
M-P, or M-Q. Routines CUNBDB2, CUNBDB3, and CUNBDB4 handle cases in
which Q is not the minimum dimension.

The unitary matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
Householder vectors.

B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
angles THETA, PHI.```
Parameters
 [in] M ``` M is INTEGER The number of rows X11 plus the number of rows in X21.``` [in] P ``` P is INTEGER The number of rows in X11. 0 <= P <= M.``` [in] Q ``` Q is INTEGER The number of columns in X11 and X21. 0 <= Q <= MIN(P,M-P,M-Q).``` [in,out] X11 ``` X11 is COMPLEX array, dimension (LDX11,Q) On entry, the top block of the matrix X to be reduced. On exit, the columns of tril(X11) specify reflectors for P1 and the rows of triu(X11,1) specify reflectors for Q1.``` [in] LDX11 ``` LDX11 is INTEGER The leading dimension of X11. LDX11 >= P.``` [in,out] X21 ``` X21 is COMPLEX array, dimension (LDX21,Q) On entry, the bottom block of the matrix X to be reduced. On exit, the columns of tril(X21) specify reflectors for P2.``` [in] LDX21 ``` LDX21 is INTEGER The leading dimension of X21. LDX21 >= M-P.``` [out] THETA ``` THETA is REAL array, dimension (Q) The entries of the bidiagonal blocks B11, B21 are defined by THETA and PHI. See Further Details.``` [out] PHI ``` PHI is REAL array, dimension (Q-1) The entries of the bidiagonal blocks B11, B21 are defined by THETA and PHI. See Further Details.``` [out] TAUP1 ``` TAUP1 is COMPLEX array, dimension (P) The scalar factors of the elementary reflectors that define P1.``` [out] TAUP2 ``` TAUP2 is COMPLEX array, dimension (M-P) The scalar factors of the elementary reflectors that define P2.``` [out] TAUQ1 ``` TAUQ1 is COMPLEX array, dimension (Q) The scalar factors of the elementary reflectors that define Q1.``` [out] WORK ` WORK is COMPLEX array, dimension (LWORK)` [in] LWORK ``` LWORK is INTEGER The dimension of the array WORK. LWORK >= M-Q. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.```
Further Details:
```  The upper-bidiagonal blocks B11, B21 are represented implicitly by
angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
in each bidiagonal band is a product of a sine or cosine of a THETA
with a sine or cosine of a PHI. See [1] or CUNCSD for details.

P1, P2, and Q1 are represented as products of elementary reflectors.
See CUNCSD2BY1 for details on generating P1, P2, and Q1 using CUNGQR
and CUNGLQ.```
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 200 of file cunbdb1.f.

202*
203* -- LAPACK computational routine --
204* -- LAPACK is a software package provided by Univ. of Tennessee, --
205* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
206*
207* .. Scalar Arguments ..
208 INTEGER INFO, LWORK, M, P, Q, LDX11, LDX21
209* ..
210* .. Array Arguments ..
211 REAL PHI(*), THETA(*)
212 COMPLEX TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
213 \$ X11(LDX11,*), X21(LDX21,*)
214* ..
215*
216* ====================================================================
217*
218* .. Parameters ..
219 COMPLEX ONE
220 parameter( one = (1.0e0,0.0e0) )
221* ..
222* .. Local Scalars ..
223 REAL C, S
224 INTEGER CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
225 \$ LWORKMIN, LWORKOPT
226 LOGICAL LQUERY
227* ..
228* .. External Subroutines ..
229 EXTERNAL clarf, clarfgp, cunbdb5, csrot, xerbla
230 EXTERNAL clacgv
231* ..
232* .. External Functions ..
233 REAL SCNRM2
234 EXTERNAL scnrm2
235* ..
236* .. Intrinsic Function ..
237 INTRINSIC atan2, cos, max, sin, sqrt
238* ..
239* .. Executable Statements ..
240*
241* Test input arguments
242*
243 info = 0
244 lquery = lwork .EQ. -1
245*
246 IF( m .LT. 0 ) THEN
247 info = -1
248 ELSE IF( p .LT. q .OR. m-p .LT. q ) THEN
249 info = -2
250 ELSE IF( q .LT. 0 .OR. m-q .LT. q ) THEN
251 info = -3
252 ELSE IF( ldx11 .LT. max( 1, p ) ) THEN
253 info = -5
254 ELSE IF( ldx21 .LT. max( 1, m-p ) ) THEN
255 info = -7
256 END IF
257*
258* Compute workspace
259*
260 IF( info .EQ. 0 ) THEN
261 ilarf = 2
262 llarf = max( p-1, m-p-1, q-1 )
263 iorbdb5 = 2
264 lorbdb5 = q-2
265 lworkopt = max( ilarf+llarf-1, iorbdb5+lorbdb5-1 )
266 lworkmin = lworkopt
267 work(1) = lworkopt
268 IF( lwork .LT. lworkmin .AND. .NOT.lquery ) THEN
269 info = -14
270 END IF
271 END IF
272 IF( info .NE. 0 ) THEN
273 CALL xerbla( 'CUNBDB1', -info )
274 RETURN
275 ELSE IF( lquery ) THEN
276 RETURN
277 END IF
278*
279* Reduce columns 1, ..., Q of X11 and X21
280*
281 DO i = 1, q
282*
283 CALL clarfgp( p-i+1, x11(i,i), x11(i+1,i), 1, taup1(i) )
284 CALL clarfgp( m-p-i+1, x21(i,i), x21(i+1,i), 1, taup2(i) )
285 theta(i) = atan2( real( x21(i,i) ), real( x11(i,i) ) )
286 c = cos( theta(i) )
287 s = sin( theta(i) )
288 x11(i,i) = one
289 x21(i,i) = one
290 CALL clarf( 'L', p-i+1, q-i, x11(i,i), 1, conjg(taup1(i)),
291 \$ x11(i,i+1), ldx11, work(ilarf) )
292 CALL clarf( 'L', m-p-i+1, q-i, x21(i,i), 1, conjg(taup2(i)),
293 \$ x21(i,i+1), ldx21, work(ilarf) )
294*
295 IF( i .LT. q ) THEN
296 CALL csrot( q-i, x11(i,i+1), ldx11, x21(i,i+1), ldx21, c,
297 \$ s )
298 CALL clacgv( q-i, x21(i,i+1), ldx21 )
299 CALL clarfgp( q-i, x21(i,i+1), x21(i,i+2), ldx21, tauq1(i) )
300 s = real( x21(i,i+1) )
301 x21(i,i+1) = one
302 CALL clarf( 'R', p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
303 \$ x11(i+1,i+1), ldx11, work(ilarf) )
304 CALL clarf( 'R', m-p-i, q-i, x21(i,i+1), ldx21, tauq1(i),
305 \$ x21(i+1,i+1), ldx21, work(ilarf) )
306 CALL clacgv( q-i, x21(i,i+1), ldx21 )
307 c = sqrt( scnrm2( p-i, x11(i+1,i+1), 1 )**2
308 \$ + scnrm2( m-p-i, x21(i+1,i+1), 1 )**2 )
309 phi(i) = atan2( s, c )
310 CALL cunbdb5( p-i, m-p-i, q-i-1, x11(i+1,i+1), 1,
311 \$ x21(i+1,i+1), 1, x11(i+1,i+2), ldx11,
312 \$ x21(i+1,i+2), ldx21, work(iorbdb5), lorbdb5,
313 \$ childinfo )
314 END IF
315*
316 END DO
317*
318 RETURN
319*
320* End of CUNBDB1
321*
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine csrot(N, CX, INCX, CY, INCY, C, S)
CSROT
Definition: csrot.f:98
subroutine clarfgp(N, ALPHA, X, INCX, TAU)
CLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition: clarfgp.f:104
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:74
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
Definition: clarf.f:128
subroutine cunbdb5(M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2, LDQ2, WORK, LWORK, INFO)
CUNBDB5
Definition: cunbdb5.f:156
real(wp) function scnrm2(n, x, incx)
SCNRM2
Definition: scnrm2.f90:90
Here is the call graph for this function:
Here is the caller graph for this function: