LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ clatzm()

subroutine clatzm ( character  SIDE,
integer  M,
integer  N,
complex, dimension( * )  V,
integer  INCV,
complex  TAU,
complex, dimension( ldc, * )  C1,
complex, dimension( ldc, * )  C2,
integer  LDC,
complex, dimension( * )  WORK 
)

CLATZM

Download CLATZM + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine CUNMRZ.

 CLATZM applies a Householder matrix generated by CTZRQF to a matrix.

 Let P = I - tau*u*u**H,   u = ( 1 ),
                               ( v )
 where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if
 SIDE = 'R'.

 If SIDE equals 'L', let
        C = [ C1 ] 1
            [ C2 ] m-1
              n
 Then C is overwritten by P*C.

 If SIDE equals 'R', let
        C = [ C1, C2 ] m
               1  n-1
 Then C is overwritten by C*P.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': form P * C
          = 'R': form C * P
[in]M
          M is INTEGER
          The number of rows of the matrix C.
[in]N
          N is INTEGER
          The number of columns of the matrix C.
[in]V
          V is COMPLEX array, dimension
                  (1 + (M-1)*abs(INCV)) if SIDE = 'L'
                  (1 + (N-1)*abs(INCV)) if SIDE = 'R'
          The vector v in the representation of P. V is not used
          if TAU = 0.
[in]INCV
          INCV is INTEGER
          The increment between elements of v. INCV <> 0
[in]TAU
          TAU is COMPLEX
          The value tau in the representation of P.
[in,out]C1
          C1 is COMPLEX array, dimension
                         (LDC,N) if SIDE = 'L'
                         (M,1)   if SIDE = 'R'
          On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1
          if SIDE = 'R'.

          On exit, the first row of P*C if SIDE = 'L', or the first
          column of C*P if SIDE = 'R'.
[in,out]C2
          C2 is COMPLEX array, dimension
                         (LDC, N)   if SIDE = 'L'
                         (LDC, N-1) if SIDE = 'R'
          On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the
          m x (n - 1) matrix C2 if SIDE = 'R'.

          On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P
          if SIDE = 'R'.
[in]LDC
          LDC is INTEGER
          The leading dimension of the arrays C1 and C2.
          LDC >= max(1,M).
[out]WORK
          WORK is COMPLEX array, dimension
                      (N) if SIDE = 'L'
                      (M) if SIDE = 'R'
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 151 of file clatzm.f.

152 *
153 * -- LAPACK computational routine --
154 * -- LAPACK is a software package provided by Univ. of Tennessee, --
155 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
156 *
157 * .. Scalar Arguments ..
158  CHARACTER SIDE
159  INTEGER INCV, LDC, M, N
160  COMPLEX TAU
161 * ..
162 * .. Array Arguments ..
163  COMPLEX C1( LDC, * ), C2( LDC, * ), V( * ), WORK( * )
164 * ..
165 *
166 * =====================================================================
167 *
168 * .. Parameters ..
169  COMPLEX ONE, ZERO
170  parameter( one = ( 1.0e+0, 0.0e+0 ),
171  $ zero = ( 0.0e+0, 0.0e+0 ) )
172 * ..
173 * .. External Subroutines ..
174  EXTERNAL caxpy, ccopy, cgemv, cgerc, cgeru, clacgv
175 * ..
176 * .. External Functions ..
177  LOGICAL LSAME
178  EXTERNAL lsame
179 * ..
180 * .. Intrinsic Functions ..
181  INTRINSIC min
182 * ..
183 * .. Executable Statements ..
184 *
185  IF( ( min( m, n ).EQ.0 ) .OR. ( tau.EQ.zero ) )
186  $ RETURN
187 *
188  IF( lsame( side, 'L' ) ) THEN
189 *
190 * w := ( C1 + v**H * C2 )**H
191 *
192  CALL ccopy( n, c1, ldc, work, 1 )
193  CALL clacgv( n, work, 1 )
194  CALL cgemv( 'Conjugate transpose', m-1, n, one, c2, ldc, v,
195  $ incv, one, work, 1 )
196 *
197 * [ C1 ] := [ C1 ] - tau* [ 1 ] * w**H
198 * [ C2 ] [ C2 ] [ v ]
199 *
200  CALL clacgv( n, work, 1 )
201  CALL caxpy( n, -tau, work, 1, c1, ldc )
202  CALL cgeru( m-1, n, -tau, v, incv, work, 1, c2, ldc )
203 *
204  ELSE IF( lsame( side, 'R' ) ) THEN
205 *
206 * w := C1 + C2 * v
207 *
208  CALL ccopy( m, c1, 1, work, 1 )
209  CALL cgemv( 'No transpose', m, n-1, one, c2, ldc, v, incv, one,
210  $ work, 1 )
211 *
212 * [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v**H]
213 *
214  CALL caxpy( m, -tau, work, 1, c1, 1 )
215  CALL cgerc( m, n-1, -tau, work, 1, v, incv, c2, ldc )
216  END IF
217 *
218  RETURN
219 *
220 * End of CLATZM
221 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:81
subroutine caxpy(N, CA, CX, INCX, CY, INCY)
CAXPY
Definition: caxpy.f:88
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
Definition: cgemv.f:158
subroutine cgerc(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERC
Definition: cgerc.f:130
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
Definition: cgeru.f:130
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
Definition: clacgv.f:74
Here is the call graph for this function:
Here is the caller graph for this function: