LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cchkhe_rook()

subroutine cchkhe_rook ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
real  THRESH,
logical  TSTERR,
integer  NMAX,
complex, dimension( * )  A,
complex, dimension( * )  AFAC,
complex, dimension( * )  AINV,
complex, dimension( * )  B,
complex, dimension( * )  X,
complex, dimension( * )  XACT,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

CCHKHE_ROOK

Purpose:
 CCHKHE_ROOK tests CHETRF_ROOK, -TRI_ROOK, -TRS_ROOK,
 and -CON_ROOK.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is REAL array, dimension (max(NMAX,2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 169 of file cchkhe_rook.f.

172 *
173 * -- LAPACK test routine --
174 * -- LAPACK is a software package provided by Univ. of Tennessee, --
175 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176 *
177 * .. Scalar Arguments ..
178  LOGICAL TSTERR
179  INTEGER NMAX, NN, NNB, NNS, NOUT
180  REAL THRESH
181 * ..
182 * .. Array Arguments ..
183  LOGICAL DOTYPE( * )
184  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
185  REAL RWORK( * )
186  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
187  $ WORK( * ), X( * ), XACT( * )
188 * ..
189 *
190 * =====================================================================
191 *
192 * .. Parameters ..
193  REAL ZERO, ONE
194  parameter( zero = 0.0e+0, one = 1.0e+0 )
195  REAL ONEHALF
196  parameter( onehalf = 0.5e+0 )
197  REAL EIGHT, SEVTEN
198  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
199  COMPLEX CZERO
200  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
201  INTEGER NTYPES
202  parameter( ntypes = 10 )
203  INTEGER NTESTS
204  parameter( ntests = 7 )
205 * ..
206 * .. Local Scalars ..
207  LOGICAL TRFCON, ZEROT
208  CHARACTER DIST, TYPE, UPLO, XTYPE
209  CHARACTER*3 PATH, MATPATH
210  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
211  $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
212  $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
213  REAL ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
214  $ SING_MIN, RCOND, RCONDC, STEMP
215 * ..
216 * .. Local Arrays ..
217  CHARACTER UPLOS( 2 )
218  INTEGER ISEED( 4 ), ISEEDY( 4 )
219  REAL RESULT( NTESTS )
220  COMPLEX BLOCK( 2, 2 ), CDUMMY( 1 )
221 * ..
222 * .. External Functions ..
223  REAL CLANGE, CLANHE, SGET06
224  EXTERNAL clange, clanhe, sget06
225 * ..
226 * .. External Subroutines ..
227  EXTERNAL alaerh, alahd, alasum, cerrhe, cgesvd, cget04,
231 * ..
232 * .. Intrinsic Functions ..
233  INTRINSIC conjg, max, min, sqrt
234 * ..
235 * .. Scalars in Common ..
236  LOGICAL LERR, OK
237  CHARACTER*32 SRNAMT
238  INTEGER INFOT, NUNIT
239 * ..
240 * .. Common blocks ..
241  COMMON / infoc / infot, nunit, ok, lerr
242  COMMON / srnamc / srnamt
243 * ..
244 * .. Data statements ..
245  DATA iseedy / 1988, 1989, 1990, 1991 /
246  DATA uplos / 'U', 'L' /
247 * ..
248 * .. Executable Statements ..
249 *
250 * Initialize constants and the random number seed.
251 *
252  alpha = ( one+sqrt( sevten ) ) / eight
253 *
254 * Test path
255 *
256  path( 1: 1 ) = 'Complex precision'
257  path( 2: 3 ) = 'HR'
258 *
259 * Path to generate matrices
260 *
261  matpath( 1: 1 ) = 'Complex precision'
262  matpath( 2: 3 ) = 'HE'
263 *
264  nrun = 0
265  nfail = 0
266  nerrs = 0
267  DO 10 i = 1, 4
268  iseed( i ) = iseedy( i )
269  10 CONTINUE
270 *
271 * Test the error exits
272 *
273  IF( tsterr )
274  $ CALL cerrhe( path, nout )
275  infot = 0
276 *
277 * Set the minimum block size for which the block routine should
278 * be used, which will be later returned by ILAENV
279 *
280  CALL xlaenv( 2, 2 )
281 *
282 * Do for each value of N in NVAL
283 *
284  DO 270 in = 1, nn
285  n = nval( in )
286  lda = max( n, 1 )
287  xtype = 'N'
288  nimat = ntypes
289  IF( n.LE.0 )
290  $ nimat = 1
291 *
292  izero = 0
293 *
294 * Do for each value of matrix type IMAT
295 *
296  DO 260 imat = 1, nimat
297 *
298 * Do the tests only if DOTYPE( IMAT ) is true.
299 *
300  IF( .NOT.dotype( imat ) )
301  $ GO TO 260
302 *
303 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
304 *
305  zerot = imat.GE.3 .AND. imat.LE.6
306  IF( zerot .AND. n.LT.imat-2 )
307  $ GO TO 260
308 *
309 * Do first for UPLO = 'U', then for UPLO = 'L'
310 *
311  DO 250 iuplo = 1, 2
312  uplo = uplos( iuplo )
313 *
314 * Begin generate the test matrix A.
315 *
316 * Set up parameters with CLATB4 for the matrix generator
317 * based on the type of matrix to be generated.
318 *
319  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
320  $ MODE, CNDNUM, DIST )
321 *
322 * Generate a matrix with CLATMS.
323 *
324  srnamt = 'CLATMS'
325  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
326  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
327  $ WORK, INFO )
328 *
329 * Check error code from CLATMS and handle error.
330 *
331  IF( info.NE.0 ) THEN
332  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
333  $ -1, -1, -1, imat, nfail, nerrs, nout )
334 *
335 * Skip all tests for this generated matrix
336 *
337  GO TO 250
338  END IF
339 *
340 * For matrix types 3-6, zero one or more rows and
341 * columns of the matrix to test that INFO is returned
342 * correctly.
343 *
344  IF( zerot ) THEN
345  IF( imat.EQ.3 ) THEN
346  izero = 1
347  ELSE IF( imat.EQ.4 ) THEN
348  izero = n
349  ELSE
350  izero = n / 2 + 1
351  END IF
352 *
353  IF( imat.LT.6 ) THEN
354 *
355 * Set row and column IZERO to zero.
356 *
357  IF( iuplo.EQ.1 ) THEN
358  ioff = ( izero-1 )*lda
359  DO 20 i = 1, izero - 1
360  a( ioff+i ) = czero
361  20 CONTINUE
362  ioff = ioff + izero
363  DO 30 i = izero, n
364  a( ioff ) = czero
365  ioff = ioff + lda
366  30 CONTINUE
367  ELSE
368  ioff = izero
369  DO 40 i = 1, izero - 1
370  a( ioff ) = czero
371  ioff = ioff + lda
372  40 CONTINUE
373  ioff = ioff - izero
374  DO 50 i = izero, n
375  a( ioff+i ) = czero
376  50 CONTINUE
377  END IF
378  ELSE
379  IF( iuplo.EQ.1 ) THEN
380 *
381 * Set the first IZERO rows and columns to zero.
382 *
383  ioff = 0
384  DO 70 j = 1, n
385  i2 = min( j, izero )
386  DO 60 i = 1, i2
387  a( ioff+i ) = czero
388  60 CONTINUE
389  ioff = ioff + lda
390  70 CONTINUE
391  ELSE
392 *
393 * Set the last IZERO rows and columns to zero.
394 *
395  ioff = 0
396  DO 90 j = 1, n
397  i1 = max( j, izero )
398  DO 80 i = i1, n
399  a( ioff+i ) = czero
400  80 CONTINUE
401  ioff = ioff + lda
402  90 CONTINUE
403  END IF
404  END IF
405  ELSE
406  izero = 0
407  END IF
408 *
409 * End generate the test matrix A.
410 *
411 *
412 * Do for each value of NB in NBVAL
413 *
414  DO 240 inb = 1, nnb
415 *
416 * Set the optimal blocksize, which will be later
417 * returned by ILAENV.
418 *
419  nb = nbval( inb )
420  CALL xlaenv( 1, nb )
421 *
422 * Copy the test matrix A into matrix AFAC which
423 * will be factorized in place. This is needed to
424 * preserve the test matrix A for subsequent tests.
425 *
426  CALL clacpy( uplo, n, n, a, lda, afac, lda )
427 *
428 * Compute the L*D*L**T or U*D*U**T factorization of the
429 * matrix. IWORK stores details of the interchanges and
430 * the block structure of D. AINV is a work array for
431 * block factorization, LWORK is the length of AINV.
432 *
433  lwork = max( 2, nb )*lda
434  srnamt = 'CHETRF_ROOK'
435  CALL chetrf_rook( uplo, n, afac, lda, iwork, ainv,
436  $ lwork, info )
437 *
438 * Adjust the expected value of INFO to account for
439 * pivoting.
440 *
441  k = izero
442  IF( k.GT.0 ) THEN
443  100 CONTINUE
444  IF( iwork( k ).LT.0 ) THEN
445  IF( iwork( k ).NE.-k ) THEN
446  k = -iwork( k )
447  GO TO 100
448  END IF
449  ELSE IF( iwork( k ).NE.k ) THEN
450  k = iwork( k )
451  GO TO 100
452  END IF
453  END IF
454 *
455 * Check error code from CHETRF_ROOK and handle error.
456 *
457  IF( info.NE.k)
458  $ CALL alaerh( path, 'CHETRF_ROOK', info, k,
459  $ uplo, n, n, -1, -1, nb, imat,
460  $ nfail, nerrs, nout )
461 *
462 * Set the condition estimate flag if the INFO is not 0.
463 *
464  IF( info.NE.0 ) THEN
465  trfcon = .true.
466  ELSE
467  trfcon = .false.
468  END IF
469 *
470 *+ TEST 1
471 * Reconstruct matrix from factors and compute residual.
472 *
473  CALL chet01_rook( uplo, n, a, lda, afac, lda, iwork,
474  $ ainv, lda, rwork, result( 1 ) )
475  nt = 1
476 *
477 *+ TEST 2
478 * Form the inverse and compute the residual,
479 * if the factorization was competed without INFO > 0
480 * (i.e. there is no zero rows and columns).
481 * Do it only for the first block size.
482 *
483  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
484  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
485  srnamt = 'CHETRI_ROOK'
486  CALL chetri_rook( uplo, n, ainv, lda, iwork, work,
487  $ info )
488 *
489 * Check error code from CHETRI_ROOK and handle error.
490 *
491  IF( info.NE.0 )
492  $ CALL alaerh( path, 'CHETRI_ROOK', info, -1,
493  $ uplo, n, n, -1, -1, -1, imat,
494  $ nfail, nerrs, nout )
495 *
496 * Compute the residual for a Hermitian matrix times
497 * its inverse.
498 *
499  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
500  $ rwork, rcondc, result( 2 ) )
501  nt = 2
502  END IF
503 *
504 * Print information about the tests that did not pass
505 * the threshold.
506 *
507  DO 110 k = 1, nt
508  IF( result( k ).GE.thresh ) THEN
509  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
510  $ CALL alahd( nout, path )
511  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
512  $ result( k )
513  nfail = nfail + 1
514  END IF
515  110 CONTINUE
516  nrun = nrun + nt
517 *
518 *+ TEST 3
519 * Compute largest element in U or L
520 *
521  result( 3 ) = zero
522  stemp = zero
523 *
524  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
525  $ ( one-alpha )
526 *
527  IF( iuplo.EQ.1 ) THEN
528 *
529 * Compute largest element in U
530 *
531  k = n
532  120 CONTINUE
533  IF( k.LE.1 )
534  $ GO TO 130
535 *
536  IF( iwork( k ).GT.zero ) THEN
537 *
538 * Get max absolute value from elements
539 * in column k in U
540 *
541  stemp = clange( 'M', k-1, 1,
542  $ afac( ( k-1 )*lda+1 ), lda, rwork )
543  ELSE
544 *
545 * Get max absolute value from elements
546 * in columns k and k-1 in U
547 *
548  stemp = clange( 'M', k-2, 2,
549  $ afac( ( k-2 )*lda+1 ), lda, rwork )
550  k = k - 1
551 *
552  END IF
553 *
554 * STEMP should be bounded by CONST
555 *
556  stemp = stemp - const + thresh
557  IF( stemp.GT.result( 3 ) )
558  $ result( 3 ) = stemp
559 *
560  k = k - 1
561 *
562  GO TO 120
563  130 CONTINUE
564 *
565  ELSE
566 *
567 * Compute largest element in L
568 *
569  k = 1
570  140 CONTINUE
571  IF( k.GE.n )
572  $ GO TO 150
573 *
574  IF( iwork( k ).GT.zero ) THEN
575 *
576 * Get max absolute value from elements
577 * in column k in L
578 *
579  stemp = clange( 'M', n-k, 1,
580  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
581  ELSE
582 *
583 * Get max absolute value from elements
584 * in columns k and k+1 in L
585 *
586  stemp = clange( 'M', n-k-1, 2,
587  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
588  k = k + 1
589 *
590  END IF
591 *
592 * STEMP should be bounded by CONST
593 *
594  stemp = stemp - const + thresh
595  IF( stemp.GT.result( 3 ) )
596  $ result( 3 ) = stemp
597 *
598  k = k + 1
599 *
600  GO TO 140
601  150 CONTINUE
602  END IF
603 *
604 *
605 *+ TEST 4
606 * Compute largest 2-Norm (condition number)
607 * of 2-by-2 diag blocks
608 *
609  result( 4 ) = zero
610  stemp = zero
611 *
612  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
613  $ ( ( one + alpha ) / ( one - alpha ) )
614  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
615 *
616  IF( iuplo.EQ.1 ) THEN
617 *
618 * Loop backward for UPLO = 'U'
619 *
620  k = n
621  160 CONTINUE
622  IF( k.LE.1 )
623  $ GO TO 170
624 *
625  IF( iwork( k ).LT.zero ) THEN
626 *
627 * Get the two singular values
628 * (real and non-negative) of a 2-by-2 block,
629 * store them in RWORK array
630 *
631  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
632  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
633  block( 2, 1 ) = conjg( block( 1, 2 ) )
634  block( 2, 2 ) = afac( (k-1)*lda+k )
635 *
636  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
637  $ cdummy, 1, cdummy, 1,
638  $ work, 6, rwork( 3 ), info )
639 *
640 *
641  sing_max = rwork( 1 )
642  sing_min = rwork( 2 )
643 *
644  stemp = sing_max / sing_min
645 *
646 * STEMP should be bounded by CONST
647 *
648  stemp = stemp - const + thresh
649  IF( stemp.GT.result( 4 ) )
650  $ result( 4 ) = stemp
651  k = k - 1
652 *
653  END IF
654 *
655  k = k - 1
656 *
657  GO TO 160
658  170 CONTINUE
659 *
660  ELSE
661 *
662 * Loop forward for UPLO = 'L'
663 *
664  k = 1
665  180 CONTINUE
666  IF( k.GE.n )
667  $ GO TO 190
668 *
669  IF( iwork( k ).LT.zero ) THEN
670 *
671 * Get the two singular values
672 * (real and non-negative) of a 2-by-2 block,
673 * store them in RWORK array
674 *
675  block( 1, 1 ) = afac( ( k-1 )*lda+k )
676  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
677  block( 1, 2 ) = conjg( block( 2, 1 ) )
678  block( 2, 2 ) = afac( k*lda+k+1 )
679 *
680  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
681  $ cdummy, 1, cdummy, 1,
682  $ work, 6, rwork(3), info )
683 *
684  sing_max = rwork( 1 )
685  sing_min = rwork( 2 )
686 *
687  stemp = sing_max / sing_min
688 *
689 * STEMP should be bounded by CONST
690 *
691  stemp = stemp - const + thresh
692  IF( stemp.GT.result( 4 ) )
693  $ result( 4 ) = stemp
694  k = k + 1
695 *
696  END IF
697 *
698  k = k + 1
699 *
700  GO TO 180
701  190 CONTINUE
702  END IF
703 *
704 * Print information about the tests that did not pass
705 * the threshold.
706 *
707  DO 200 k = 3, 4
708  IF( result( k ).GE.thresh ) THEN
709  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
710  $ CALL alahd( nout, path )
711  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
712  $ result( k )
713  nfail = nfail + 1
714  END IF
715  200 CONTINUE
716  nrun = nrun + 2
717 *
718 * Skip the other tests if this is not the first block
719 * size.
720 *
721  IF( inb.GT.1 )
722  $ GO TO 240
723 *
724 * Do only the condition estimate if INFO is not 0.
725 *
726  IF( trfcon ) THEN
727  rcondc = zero
728  GO TO 230
729  END IF
730 *
731 * Do for each value of NRHS in NSVAL.
732 *
733  DO 220 irhs = 1, nns
734  nrhs = nsval( irhs )
735 *
736 * Begin loop over NRHS values
737 *
738 *
739 *+ TEST 5 ( Using TRS_ROOK)
740 * Solve and compute residual for A * X = B.
741 *
742 * Choose a set of NRHS random solution vectors
743 * stored in XACT and set up the right hand side B
744 *
745  srnamt = 'CLARHS'
746  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
747  $ kl, ku, nrhs, a, lda, xact, lda,
748  $ b, lda, iseed, info )
749  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
750 *
751  srnamt = 'CHETRS_ROOK'
752  CALL chetrs_rook( uplo, n, nrhs, afac, lda, iwork,
753  $ x, lda, info )
754 *
755 * Check error code from CHETRS_ROOK and handle error.
756 *
757  IF( info.NE.0 )
758  $ CALL alaerh( path, 'CHETRS_ROOK', info, 0,
759  $ uplo, n, n, -1, -1, nrhs, imat,
760  $ nfail, nerrs, nout )
761 *
762  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
763 *
764 * Compute the residual for the solution
765 *
766  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
767  $ lda, rwork, result( 5 ) )
768 *
769 *+ TEST 6
770 * Check solution from generated exact solution.
771 *
772  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
773  $ result( 6 ) )
774 *
775 * Print information about the tests that did not pass
776 * the threshold.
777 *
778  DO 210 k = 5, 6
779  IF( result( k ).GE.thresh ) THEN
780  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
781  $ CALL alahd( nout, path )
782  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
783  $ imat, k, result( k )
784  nfail = nfail + 1
785  END IF
786  210 CONTINUE
787  nrun = nrun + 2
788 *
789 * End do for each value of NRHS in NSVAL.
790 *
791  220 CONTINUE
792 *
793 *+ TEST 7
794 * Get an estimate of RCOND = 1/CNDNUM.
795 *
796  230 CONTINUE
797  anorm = clanhe( '1', uplo, n, a, lda, rwork )
798  srnamt = 'CHECON_ROOK'
799  CALL checon_rook( uplo, n, afac, lda, iwork, anorm,
800  $ rcond, work, info )
801 *
802 * Check error code from CHECON_ROOK and handle error.
803 *
804  IF( info.NE.0 )
805  $ CALL alaerh( path, 'CHECON_ROOK', info, 0,
806  $ uplo, n, n, -1, -1, -1, imat,
807  $ nfail, nerrs, nout )
808 *
809 * Compute the test ratio to compare values of RCOND
810 *
811  result( 7 ) = sget06( rcond, rcondc )
812 *
813 * Print information about the tests that did not pass
814 * the threshold.
815 *
816  IF( result( 7 ).GE.thresh ) THEN
817  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
818  $ CALL alahd( nout, path )
819  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
820  $ result( 7 )
821  nfail = nfail + 1
822  END IF
823  nrun = nrun + 1
824  240 CONTINUE
825 *
826  250 CONTINUE
827  260 CONTINUE
828  270 CONTINUE
829 *
830 * Print a summary of the results.
831 *
832  CALL alasum( path, nout, nfail, nrun, nerrs )
833 *
834  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
835  $ i2, ', test ', i2, ', ratio =', g12.5 )
836  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
837  $ i2, ', test ', i2, ', ratio =', g12.5 )
838  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
839  $ ', test ', i2, ', ratio =', g12.5 )
840  RETURN
841 *
842 * End of CCHKHE_ROOK
843 *
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine chet01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01_ROOK
Definition: chet01_rook.f:125
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cerrhe(PATH, NUNIT)
CERRHE
Definition: cerrhe.f:55
subroutine cpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CPOT03
Definition: cpot03.f:126
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:115
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:214
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
subroutine checon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obt...
Definition: checon_rook.f:139
subroutine chetrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS_ROOK computes the solution to a system of linear equations A * X = B for HE matrices using fac...
Definition: chetrs_rook.f:136
subroutine chetrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_ROOK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bun...
Definition: chetrf_rook.f:212
subroutine chetri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CHETRI_ROOK computes the inverse of HE matrix using the factorization obtained with the bounded Bunch...
Definition: chetri_rook.f:128
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: