 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ cpot02()

 subroutine cpot02 ( character UPLO, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldx, * ) X, integer LDX, complex, dimension( ldb, * ) B, integer LDB, real, dimension( * ) RWORK, real RESID )

CPOT02

Purpose:
``` CPOT02 computes the residual for the solution of a Hermitian system
of linear equations  A*x = b:

RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),

where EPS is the machine epsilon.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular``` [in] N ``` N is INTEGER The number of rows and columns of the matrix A. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0.``` [in] A ``` A is COMPLEX array, dimension (LDA,N) The original Hermitian matrix A.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N)``` [in] X ``` X is COMPLEX array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [in,out] B ``` B is COMPLEX array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] RWORK ` RWORK is REAL array, dimension (N)` [out] RESID ``` RESID is REAL The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ).```

Definition at line 125 of file cpot02.f.

127 *
128 * -- LAPACK test routine --
129 * -- LAPACK is a software package provided by Univ. of Tennessee, --
130 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131 *
132 * .. Scalar Arguments ..
133  CHARACTER UPLO
134  INTEGER LDA, LDB, LDX, N, NRHS
135  REAL RESID
136 * ..
137 * .. Array Arguments ..
138  REAL RWORK( * )
139  COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
140 * ..
141 *
142 * =====================================================================
143 *
144 * .. Parameters ..
145  REAL ZERO, ONE
146  parameter( zero = 0.0e+0, one = 1.0e+0 )
147  COMPLEX CONE
148  parameter( cone = ( 1.0e+0, 0.0e+0 ) )
149 * ..
150 * .. Local Scalars ..
151  INTEGER J
152  REAL ANORM, BNORM, EPS, XNORM
153 * ..
154 * .. External Functions ..
155  REAL CLANHE, SCASUM, SLAMCH
156  EXTERNAL clanhe, scasum, slamch
157 * ..
158 * .. External Subroutines ..
159  EXTERNAL chemm
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC max
163 * ..
164 * .. Executable Statements ..
165 *
166 * Quick exit if N = 0 or NRHS = 0.
167 *
168  IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
169  resid = zero
170  RETURN
171  END IF
172 *
173 * Exit with RESID = 1/EPS if ANORM = 0.
174 *
175  eps = slamch( 'Epsilon' )
176  anorm = clanhe( '1', uplo, n, a, lda, rwork )
177  IF( anorm.LE.zero ) THEN
178  resid = one / eps
179  RETURN
180  END IF
181 *
182 * Compute B - A*X
183 *
184  CALL chemm( 'Left', uplo, n, nrhs, -cone, a, lda, x, ldx, cone, b,
185  \$ ldb )
186 *
187 * Compute the maximum over the number of right hand sides of
188 * norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
189 *
190  resid = zero
191  DO 10 j = 1, nrhs
192  bnorm = scasum( n, b( 1, j ), 1 )
193  xnorm = scasum( n, x( 1, j ), 1 )
194  IF( xnorm.LE.zero ) THEN
195  resid = one / eps
196  ELSE
197  resid = max( resid, ( ( bnorm/anorm )/xnorm )/eps )
198  END IF
199  10 CONTINUE
200 *
201  RETURN
202 *
203 * End of CPOT02
204 *
subroutine chemm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CHEMM
Definition: chemm.f:191
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
real function scasum(N, CX, INCX)
SCASUM
Definition: scasum.f:72
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: