LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cdrvhe_rk()

subroutine cdrvhe_rk ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NRHS,
real  THRESH,
logical  TSTERR,
integer  NMAX,
complex, dimension( * )  A,
complex, dimension( * )  AFAC,
complex, dimension( * )  E,
complex, dimension( * )  AINV,
complex, dimension( * )  B,
complex, dimension( * )  X,
complex, dimension( * )  XACT,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

CDRVHE_RK

Purpose:
 CDRVHE_RK tests the driver routines CHESV_RK.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]E
          E is COMPLEX array, dimension (NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is REAL array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file cdrvhe_rk.f.

158 *
159 * -- LAPACK test routine --
160 * -- LAPACK is a software package provided by Univ. of Tennessee, --
161 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162 *
163 * .. Scalar Arguments ..
164  LOGICAL TSTERR
165  INTEGER NMAX, NN, NOUT, NRHS
166  REAL THRESH
167 * ..
168 * .. Array Arguments ..
169  LOGICAL DOTYPE( * )
170  INTEGER IWORK( * ), NVAL( * )
171  REAL RWORK( * )
172  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
173  $ WORK( * ), X( * ), XACT( * )
174 * ..
175 *
176 * =====================================================================
177 *
178 * .. Parameters ..
179  REAL ONE, ZERO
180  parameter( one = 1.0e+0, zero = 0.0e+0 )
181  INTEGER NTYPES, NTESTS
182  parameter( ntypes = 10, ntests = 3 )
183  INTEGER NFACT
184  parameter( nfact = 2 )
185 * ..
186 * .. Local Scalars ..
187  LOGICAL ZEROT
188  CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
189  CHARACTER*3 MATPATH, PATH
190  INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
191  $ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
192  $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
193  REAL AINVNM, ANORM, CNDNUM, RCONDC
194 * ..
195 * .. Local Arrays ..
196  CHARACTER FACTS( NFACT ), UPLOS( 2 )
197  INTEGER ISEED( 4 ), ISEEDY( 4 )
198  REAL RESULT( NTESTS )
199 
200 * ..
201 * .. External Functions ..
202  REAL CLANHE
203  EXTERNAL clanhe
204 * ..
205 * .. External Subroutines ..
206  EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx, cget04,
209 * ..
210 * .. Scalars in Common ..
211  LOGICAL LERR, OK
212  CHARACTER*32 SRNAMT
213  INTEGER INFOT, NUNIT
214 * ..
215 * .. Common blocks ..
216  COMMON / infoc / infot, nunit, ok, lerr
217  COMMON / srnamc / srnamt
218 * ..
219 * .. Intrinsic Functions ..
220  INTRINSIC max, min
221 * ..
222 * .. Data statements ..
223  DATA iseedy / 1988, 1989, 1990, 1991 /
224  DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
225 * ..
226 * .. Executable Statements ..
227 *
228 * Initialize constants and the random number seed.
229 *
230 * Test path
231 *
232  path( 1: 1 ) = 'Complex precision'
233  path( 2: 3 ) = 'HK'
234 *
235 * Path to generate matrices
236 *
237  matpath( 1: 1 ) = 'Complex precision'
238  matpath( 2: 3 ) = 'HE'
239 *
240  nrun = 0
241  nfail = 0
242  nerrs = 0
243  DO 10 i = 1, 4
244  iseed( i ) = iseedy( i )
245  10 CONTINUE
246  lwork = max( 2*nmax, nmax*nrhs )
247 *
248 * Test the error exits
249 *
250  IF( tsterr )
251  $ CALL cerrvx( path, nout )
252  infot = 0
253 *
254 * Set the block size and minimum block size for which the block
255 * routine should be used, which will be later returned by ILAENV.
256 *
257  nb = 1
258  nbmin = 2
259  CALL xlaenv( 1, nb )
260  CALL xlaenv( 2, nbmin )
261 *
262 * Do for each value of N in NVAL
263 *
264  DO 180 in = 1, nn
265  n = nval( in )
266  lda = max( n, 1 )
267  xtype = 'N'
268  nimat = ntypes
269  IF( n.LE.0 )
270  $ nimat = 1
271 *
272  DO 170 imat = 1, nimat
273 *
274 * Do the tests only if DOTYPE( IMAT ) is true.
275 *
276  IF( .NOT.dotype( imat ) )
277  $ GO TO 170
278 *
279 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
280 *
281  zerot = imat.GE.3 .AND. imat.LE.6
282  IF( zerot .AND. n.LT.imat-2 )
283  $ GO TO 170
284 *
285 * Do first for UPLO = 'U', then for UPLO = 'L'
286 *
287  DO 160 iuplo = 1, 2
288  uplo = uplos( iuplo )
289 *
290 * Begin generate the test matrix A.
291 *
292 * Set up parameters with CLATB4 for the matrix generator
293 * based on the type of matrix to be generated.
294 *
295  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
296  $ MODE, CNDNUM, DIST )
297 *
298 * Generate a matrix with CLATMS.
299 *
300  srnamt = 'CLATMS'
301  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
302  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
303  $ WORK, INFO )
304 *
305 * Check error code from CLATMS and handle error.
306 *
307  IF( info.NE.0 ) THEN
308  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
309  $ -1, -1, -1, imat, nfail, nerrs, nout )
310  GO TO 160
311  END IF
312 *
313 * For types 3-6, zero one or more rows and columns of
314 * the matrix to test that INFO is returned correctly.
315 *
316  IF( zerot ) THEN
317  IF( imat.EQ.3 ) THEN
318  izero = 1
319  ELSE IF( imat.EQ.4 ) THEN
320  izero = n
321  ELSE
322  izero = n / 2 + 1
323  END IF
324 *
325  IF( imat.LT.6 ) THEN
326 *
327 * Set row and column IZERO to zero.
328 *
329  IF( iuplo.EQ.1 ) THEN
330  ioff = ( izero-1 )*lda
331  DO 20 i = 1, izero - 1
332  a( ioff+i ) = zero
333  20 CONTINUE
334  ioff = ioff + izero
335  DO 30 i = izero, n
336  a( ioff ) = zero
337  ioff = ioff + lda
338  30 CONTINUE
339  ELSE
340  ioff = izero
341  DO 40 i = 1, izero - 1
342  a( ioff ) = zero
343  ioff = ioff + lda
344  40 CONTINUE
345  ioff = ioff - izero
346  DO 50 i = izero, n
347  a( ioff+i ) = zero
348  50 CONTINUE
349  END IF
350  ELSE
351  IF( iuplo.EQ.1 ) THEN
352 *
353 * Set the first IZERO rows and columns to zero.
354 *
355  ioff = 0
356  DO 70 j = 1, n
357  i2 = min( j, izero )
358  DO 60 i = 1, i2
359  a( ioff+i ) = zero
360  60 CONTINUE
361  ioff = ioff + lda
362  70 CONTINUE
363  ELSE
364 *
365 * Set the first IZERO rows and columns to zero.
366 *
367  ioff = 0
368  DO 90 j = 1, n
369  i1 = max( j, izero )
370  DO 80 i = i1, n
371  a( ioff+i ) = zero
372  80 CONTINUE
373  ioff = ioff + lda
374  90 CONTINUE
375  END IF
376  END IF
377  ELSE
378  izero = 0
379  END IF
380 *
381 * End generate the test matrix A.
382 *
383 *
384  DO 150 ifact = 1, nfact
385 *
386 * Do first for FACT = 'F', then for other values.
387 *
388  fact = facts( ifact )
389 *
390 * Compute the condition number
391 *
392  IF( zerot ) THEN
393  IF( ifact.EQ.1 )
394  $ GO TO 150
395  rcondc = zero
396 *
397  ELSE IF( ifact.EQ.1 ) THEN
398 *
399 * Compute the 1-norm of A.
400 *
401  anorm = clanhe( '1', uplo, n, a, lda, rwork )
402 *
403 * Factor the matrix A.
404 *
405  CALL clacpy( uplo, n, n, a, lda, afac, lda )
406  CALL chetrf_rk( uplo, n, afac, lda, e, iwork, work,
407  $ lwork, info )
408 *
409 * Compute inv(A) and take its norm.
410 *
411  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
412  lwork = (n+nb+1)*(nb+3)
413 *
414 * We need to compute the inverse to compute
415 * RCONDC that is used later in TEST3.
416 *
417  CALL csytri_3( uplo, n, ainv, lda, e, iwork,
418  $ work, lwork, info )
419  ainvnm = clanhe( '1', uplo, n, ainv, lda, rwork )
420 *
421 * Compute the 1-norm condition number of A.
422 *
423  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
424  rcondc = one
425  ELSE
426  rcondc = ( one / anorm ) / ainvnm
427  END IF
428  END IF
429 *
430 * Form an exact solution and set the right hand side.
431 *
432  srnamt = 'CLARHS'
433  CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
434  $ nrhs, a, lda, xact, lda, b, lda, iseed,
435  $ info )
436  xtype = 'C'
437 *
438 * --- Test CHESV_RK ---
439 *
440  IF( ifact.EQ.2 ) THEN
441  CALL clacpy( uplo, n, n, a, lda, afac, lda )
442  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
443 *
444 * Factor the matrix and solve the system using
445 * CHESV_RK.
446 *
447  srnamt = 'CHESV_RK'
448  CALL chesv_rk( uplo, n, nrhs, afac, lda, e, iwork,
449  $ x, lda, work, lwork, info )
450 *
451 * Adjust the expected value of INFO to account for
452 * pivoting.
453 *
454  k = izero
455  IF( k.GT.0 ) THEN
456  100 CONTINUE
457  IF( iwork( k ).LT.0 ) THEN
458  IF( iwork( k ).NE.-k ) THEN
459  k = -iwork( k )
460  GO TO 100
461  END IF
462  ELSE IF( iwork( k ).NE.k ) THEN
463  k = iwork( k )
464  GO TO 100
465  END IF
466  END IF
467 *
468 * Check error code from CHESV_RK and handle error.
469 *
470  IF( info.NE.k ) THEN
471  CALL alaerh( path, 'CHESV_RK', info, k, uplo,
472  $ n, n, -1, -1, nrhs, imat, nfail,
473  $ nerrs, nout )
474  GO TO 120
475  ELSE IF( info.NE.0 ) THEN
476  GO TO 120
477  END IF
478 *
479 *+ TEST 1 Reconstruct matrix from factors and compute
480 * residual.
481 *
482  CALL chet01_3( uplo, n, a, lda, afac, lda, e,
483  $ iwork, ainv, lda, rwork,
484  $ result( 1 ) )
485 *
486 *+ TEST 2 Compute residual of the computed solution.
487 *
488  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
489  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
490  $ lda, rwork, result( 2 ) )
491 *
492 *+ TEST 3
493 * Check solution from generated exact solution.
494 *
495  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
496  $ result( 3 ) )
497  nt = 3
498 *
499 * Print information about the tests that did not pass
500 * the threshold.
501 *
502  DO 110 k = 1, nt
503  IF( result( k ).GE.thresh ) THEN
504  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
505  $ CALL aladhd( nout, path )
506  WRITE( nout, fmt = 9999 )'CHESV_RK', uplo,
507  $ n, imat, k, result( k )
508  nfail = nfail + 1
509  END IF
510  110 CONTINUE
511  nrun = nrun + nt
512  120 CONTINUE
513  END IF
514 *
515  150 CONTINUE
516 *
517  160 CONTINUE
518  170 CONTINUE
519  180 CONTINUE
520 *
521 * Print a summary of the results.
522 *
523  CALL alasvm( path, nout, nfail, nrun, nerrs )
524 *
525  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
526  $ ', test ', i2, ', ratio =', g12.5 )
527  RETURN
528 *
529 * End of CDRVHE_RK
530 *
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine chet01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
CHET01_3
Definition: chet01_3.f:141
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine cerrvx(PATH, NUNIT)
CERRVX
Definition: cerrvx.f:55
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
subroutine chetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRI_3
Definition: chetri_3.f:170
subroutine chetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: chetrf_rk.f:259
subroutine chesv_rk(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, WORK, LWORK, INFO)
CHESV_RK computes the solution to system of linear equations A * X = B for SY matrices
Definition: chesv_rk.f:228
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
subroutine csytri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CSYTRI_3
Definition: csytri_3.f:170
Here is the call graph for this function:
Here is the caller graph for this function: