LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cchkhe_aa()

subroutine cchkhe_aa ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
real  THRESH,
logical  TSTERR,
integer  NMAX,
complex, dimension( * )  A,
complex, dimension( * )  AFAC,
complex, dimension( * )  AINV,
complex, dimension( * )  B,
complex, dimension( * )  X,
complex, dimension( * )  XACT,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

CCHKHE_AA

Purpose:
 CCHKHE_AA tests CHETRF_AA, -TRS_AA.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 168 of file cchkhe_aa.f.

171 *
172 * -- LAPACK test routine --
173 * -- LAPACK is a software package provided by Univ. of Tennessee, --
174 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175 *
176  IMPLICIT NONE
177 *
178 * .. Scalar Arguments ..
179  LOGICAL TSTERR
180  INTEGER NMAX, NN, NNB, NNS, NOUT
181  REAL THRESH
182 * ..
183 * .. Array Arguments ..
184  LOGICAL DOTYPE( * )
185  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
186  REAL RWORK( * )
187  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
188  $ WORK( * ), X( * ), XACT( * )
189 * ..
190 *
191 * =====================================================================
192 *
193 * .. Parameters ..
194  REAL ZERO
195  parameter( zero = 0.0e+0 )
196  COMPLEX CZERO
197  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
198  INTEGER NTYPES
199  parameter( ntypes = 10 )
200  INTEGER NTESTS
201  parameter( ntests = 9 )
202 * ..
203 * .. Local Scalars ..
204  LOGICAL ZEROT
205  CHARACTER DIST, TYPE, UPLO, XTYPE
206  CHARACTER*3 PATH, MATPATH
207  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
208  $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
209  $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
210  REAL ANORM, CNDNUM
211 * ..
212 * .. Local Arrays ..
213  CHARACTER UPLOS( 2 )
214  INTEGER ISEED( 4 ), ISEEDY( 4 )
215  REAL RESULT( NTESTS )
216 * ..
217 * .. External Subroutines ..
218  EXTERNAL alaerh, alahd, alasum, xlaenv, cerrhe, chet01_aa,
220  $ clatb4, clatms, cpot02
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC max, min
224 * ..
225 * .. Scalars in Common ..
226  LOGICAL LERR, OK
227  CHARACTER*32 SRNAMT
228  INTEGER INFOT, NUNIT
229 * ..
230 * .. Common blocks ..
231  COMMON / infoc / infot, nunit, ok, lerr
232  COMMON / srnamc / srnamt
233 * ..
234 * .. Data statements ..
235  DATA iseedy / 1988, 1989, 1990, 1991 /
236  DATA uplos / 'U', 'L' /
237 * ..
238 * .. Executable Statements ..
239 *
240 * Initialize constants and the random number seed.
241 *
242 *
243 * Test path
244 *
245  path( 1: 1 ) = 'Complex precision'
246  path( 2: 3 ) = 'HA'
247 *
248 * Path to generate matrices
249 *
250  matpath( 1: 1 ) = 'Complex precision'
251  matpath( 2: 3 ) = 'HE'
252  nrun = 0
253  nfail = 0
254  nerrs = 0
255  DO 10 i = 1, 4
256  iseed( i ) = iseedy( i )
257  10 CONTINUE
258 *
259 * Test the error exits
260 *
261  IF( tsterr )
262  $ CALL cerrhe( path, nout )
263  infot = 0
264 *
265 * Set the minimum block size for which the block routine should
266 * be used, which will be later returned by ILAENV
267 *
268  CALL xlaenv( 2, 2 )
269 *
270 * Do for each value of N in NVAL
271 *
272  DO 180 in = 1, nn
273  n = nval( in )
274  IF( n .GT. nmax ) THEN
275  nfail = nfail + 1
276  WRITE(nout, 9995) 'M ', n, nmax
277  GO TO 180
278  END IF
279  lda = max( n, 1 )
280  xtype = 'N'
281  nimat = ntypes
282  IF( n.LE.0 )
283  $ nimat = 1
284 *
285  izero = 0
286  DO 170 imat = 1, nimat
287 *
288 * Do the tests only if DOTYPE( IMAT ) is true.
289 *
290  IF( .NOT.dotype( imat ) )
291  $ GO TO 170
292 *
293 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
294 *
295  zerot = imat.GE.3 .AND. imat.LE.6
296  IF( zerot .AND. n.LT.imat-2 )
297  $ GO TO 170
298 *
299 * Do first for UPLO = 'U', then for UPLO = 'L'
300 *
301  DO 160 iuplo = 1, 2
302  uplo = uplos( iuplo )
303 *
304 * Set up parameters with CLATB4 for the matrix generator
305 * based on the type of matrix to be generated.
306 *
307  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU,
308  $ ANORM, MODE, CNDNUM, DIST )
309 *
310 * Generate a matrix with CLATMS.
311 *
312  srnamt = 'CLATMS'
313  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
314  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
315  $ INFO )
316 *
317 * Check error code from CLATMS and handle error.
318 *
319  IF( info.NE.0 ) THEN
320  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n, -1,
321  $ -1, -1, imat, nfail, nerrs, nout )
322 *
323 * Skip all tests for this generated matrix
324 *
325  GO TO 160
326  END IF
327 *
328 * For types 3-6, zero one or more rows and columns of
329 * the matrix to test that INFO is returned correctly.
330 *
331  IF( zerot ) THEN
332  IF( imat.EQ.3 ) THEN
333  izero = 1
334  ELSE IF( imat.EQ.4 ) THEN
335  izero = n
336  ELSE
337  izero = n / 2 + 1
338  END IF
339 *
340  IF( imat.LT.6 ) THEN
341 *
342 * Set row and column IZERO to zero.
343 *
344  IF( iuplo.EQ.1 ) THEN
345  ioff = ( izero-1 )*lda
346  DO 20 i = 1, izero - 1
347  a( ioff+i ) = czero
348  20 CONTINUE
349  ioff = ioff + izero
350  DO 30 i = izero, n
351  a( ioff ) = czero
352  ioff = ioff + lda
353  30 CONTINUE
354  ELSE
355  ioff = izero
356  DO 40 i = 1, izero - 1
357  a( ioff ) = czero
358  ioff = ioff + lda
359  40 CONTINUE
360  ioff = ioff - izero
361  DO 50 i = izero, n
362  a( ioff+i ) = czero
363  50 CONTINUE
364  END IF
365  ELSE
366  IF( iuplo.EQ.1 ) THEN
367 *
368 * Set the first IZERO rows and columns to zero.
369 *
370  ioff = 0
371  DO 70 j = 1, n
372  i2 = min( j, izero )
373  DO 60 i = 1, i2
374  a( ioff+i ) = czero
375  60 CONTINUE
376  ioff = ioff + lda
377  70 CONTINUE
378  izero = 1
379  ELSE
380 *
381 * Set the last IZERO rows and columns to zero.
382 *
383  ioff = 0
384  DO 90 j = 1, n
385  i1 = max( j, izero )
386  DO 80 i = i1, n
387  a( ioff+i ) = czero
388  80 CONTINUE
389  ioff = ioff + lda
390  90 CONTINUE
391  END IF
392  END IF
393  ELSE
394  izero = 0
395  END IF
396 *
397 * End generate test matrix A.
398 *
399 *
400 * Set the imaginary part of the diagonals.
401 *
402  CALL claipd( n, a, lda+1, 0 )
403 *
404 * Do for each value of NB in NBVAL
405 *
406  DO 150 inb = 1, nnb
407 *
408 * Set the optimal blocksize, which will be later
409 * returned by ILAENV.
410 *
411  nb = nbval( inb )
412  CALL xlaenv( 1, nb )
413 *
414 * Copy the test matrix A into matrix AFAC which
415 * will be factorized in place. This is needed to
416 * preserve the test matrix A for subsequent tests.
417 *
418  CALL clacpy( uplo, n, n, a, lda, afac, lda )
419 *
420 * Compute the L*D*L**T or U*D*U**T factorization of the
421 * matrix. IWORK stores details of the interchanges and
422 * the block structure of D. AINV is a work array for
423 * block factorization, LWORK is the length of AINV.
424 *
425  lwork = max( 1, ( nb+1 )*lda )
426  srnamt = 'CHETRF_AA'
427  CALL chetrf_aa( uplo, n, afac, lda, iwork, ainv,
428  $ lwork, info )
429 *
430 * Adjust the expected value of INFO to account for
431 * pivoting.
432 *
433 c IF( IZERO.GT.0 ) THEN
434 c J = 1
435 c K = IZERO
436 c 100 CONTINUE
437 c IF( J.EQ.K ) THEN
438 c K = IWORK( J )
439 c ELSE IF( IWORK( J ).EQ.K ) THEN
440 c K = J
441 c END IF
442 c IF( J.LT.K ) THEN
443 c J = J + 1
444 c GO TO 100
445 c END IF
446 c ELSE
447  k = 0
448 c END IF
449 *
450 * Check error code from CHETRF and handle error.
451 *
452  IF( info.NE.k ) THEN
453  CALL alaerh( path, 'CHETRF_AA', info, k, uplo,
454  $ n, n, -1, -1, nb, imat, nfail, nerrs,
455  $ nout )
456  END IF
457 *
458 *+ TEST 1
459 * Reconstruct matrix from factors and compute residual.
460 *
461  CALL chet01_aa( uplo, n, a, lda, afac, lda, iwork,
462  $ ainv, lda, rwork, result( 1 ) )
463  nt = 1
464 *
465 *
466 * Print information about the tests that did not pass
467 * the threshold.
468 *
469  DO 110 k = 1, nt
470  IF( result( k ).GE.thresh ) THEN
471  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
472  $ CALL alahd( nout, path )
473  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
474  $ result( k )
475  nfail = nfail + 1
476  END IF
477  110 CONTINUE
478  nrun = nrun + nt
479 *
480 * Skip solver test if INFO is not 0.
481 *
482  IF( info.NE.0 ) THEN
483  GO TO 140
484  END IF
485 *
486 * Do for each value of NRHS in NSVAL.
487 *
488  DO 130 irhs = 1, nns
489  nrhs = nsval( irhs )
490 *
491 *+ TEST 2 (Using TRS)
492 * Solve and compute residual for A * X = B.
493 *
494 * Choose a set of NRHS random solution vectors
495 * stored in XACT and set up the right hand side B
496 *
497  srnamt = 'CLARHS'
498  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
499  $ kl, ku, nrhs, a, lda, xact, lda,
500  $ b, lda, iseed, info )
501  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
502 *
503  srnamt = 'CHETRS_AA'
504  lwork = max( 1, 3*n-2 )
505  CALL chetrs_aa( uplo, n, nrhs, afac, lda, iwork,
506  $ x, lda, work, lwork, info )
507 *
508 * Check error code from CHETRS and handle error.
509 *
510  IF( info.NE.0 ) THEN
511  IF( izero.EQ.0 ) THEN
512  CALL alaerh( path, 'CHETRS_AA', info, 0,
513  $ uplo, n, n, -1, -1, nrhs, imat,
514  $ nfail, nerrs, nout )
515  END IF
516  ELSE
517  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda
518  $ )
519 *
520 * Compute the residual for the solution
521 *
522  CALL cpot02( uplo, n, nrhs, a, lda, x, lda,
523  $ work, lda, rwork, result( 2 ) )
524 *
525 * Print information about the tests that did not pass
526 * the threshold.
527 *
528  DO 120 k = 2, 2
529  IF( result( k ).GE.thresh ) THEN
530  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
531  $ CALL alahd( nout, path )
532  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
533  $ imat, k, result( k )
534  nfail = nfail + 1
535  END IF
536  120 CONTINUE
537  END IF
538  nrun = nrun + 1
539 *
540 * End do for each value of NRHS in NSVAL.
541 *
542  130 CONTINUE
543  140 CONTINUE
544  150 CONTINUE
545  160 CONTINUE
546  170 CONTINUE
547  180 CONTINUE
548 *
549 * Print a summary of the results.
550 *
551  CALL alasum( path, nout, nfail, nrun, nerrs )
552 *
553  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
554  $ i2, ', test ', i2, ', ratio =', g12.5 )
555  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
556  $ i2, ', test(', i2, ') =', g12.5 )
557  9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
558  $ i6 )
559  RETURN
560 *
561 * End of CCHKHE_AA
562 *
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cerrhe(PATH, NUNIT)
CERRHE
Definition: cerrhe.f:55
subroutine chet01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CHET01_AA
Definition: chet01_aa.f:124
subroutine claipd(N, A, INDA, VINDA)
CLAIPD
Definition: claipd.f:83
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
subroutine chetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CHETRF_AA
Definition: chetrf_aa.f:132
subroutine chetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
CHETRS_AA
Definition: chetrs_aa.f:131
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
Here is the call graph for this function:
Here is the caller graph for this function: