LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cqrt11()

real function cqrt11 ( integer  M,
integer  K,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( * )  TAU,
complex, dimension( lwork )  WORK,
integer  LWORK 
)

CQRT11

Purpose:
 CQRT11 computes the test ratio

       || Q'*Q - I || / (eps * m)

 where the orthogonal matrix Q is represented as a product of
 elementary transformations.  Each transformation has the form

    H(k) = I - tau(k) v(k) v(k)'

 where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
 [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
 in A(k+1:m,k).
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.
[in]K
          K is INTEGER
          The number of columns of A whose subdiagonal entries
          contain information about orthogonal transformations.
[in]A
          A is COMPLEX array, dimension (LDA,K)
          The (possibly partial) output of a QR reduction routine.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
[in]TAU
          TAU is COMPLEX array, dimension (K)
          The scaling factors tau for the elementary transformations as
          computed by the QR factorization routine.
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The length of the array WORK.  LWORK >= M*M + M.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 97 of file cqrt11.f.

98 *
99 * -- LAPACK test routine --
100 * -- LAPACK is a software package provided by Univ. of Tennessee, --
101 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102 *
103 * .. Scalar Arguments ..
104  INTEGER K, LDA, LWORK, M
105 * ..
106 * .. Array Arguments ..
107  COMPLEX A( LDA, * ), TAU( * ), WORK( LWORK )
108 * ..
109 *
110 * =====================================================================
111 *
112 * .. Parameters ..
113  REAL ZERO, ONE
114  parameter( zero = 0.0e0, one = 1.0e0 )
115 * ..
116 * .. Local Scalars ..
117  INTEGER INFO, J
118 * ..
119 * .. External Functions ..
120  REAL CLANGE, SLAMCH
121  EXTERNAL clange, slamch
122 * ..
123 * .. External Subroutines ..
124  EXTERNAL claset, cunm2r, xerbla
125 * ..
126 * .. Intrinsic Functions ..
127  INTRINSIC cmplx, real
128 * ..
129 * .. Local Arrays ..
130  REAL RDUMMY( 1 )
131 * ..
132 * .. Executable Statements ..
133 *
134  cqrt11 = zero
135 *
136 * Test for sufficient workspace
137 *
138  IF( lwork.LT.m*m+m ) THEN
139  CALL xerbla( 'CQRT11', 7 )
140  RETURN
141  END IF
142 *
143 * Quick return if possible
144 *
145  IF( m.LE.0 )
146  $ RETURN
147 *
148  CALL claset( 'Full', m, m, cmplx( zero ), cmplx( one ), work, m )
149 *
150 * Form Q
151 *
152  CALL cunm2r( 'Left', 'No transpose', m, m, k, a, lda, tau, work,
153  $ m, work( m*m+1 ), info )
154 *
155 * Form Q'*Q
156 *
157  CALL cunm2r( 'Left', 'Conjugate transpose', m, m, k, a, lda, tau,
158  $ work, m, work( m*m+1 ), info )
159 *
160  DO 10 j = 1, m
161  work( ( j-1 )*m+j ) = work( ( j-1 )*m+j ) - one
162  10 CONTINUE
163 *
164  cqrt11 = clange( 'One-norm', m, m, work, m, rdummy ) /
165  $ ( real( m )*slamch( 'Epsilon' ) )
166 *
167  RETURN
168 *
169 * End of CQRT11
170 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
real function cqrt11(M, K, A, LDA, TAU, WORK, LWORK)
CQRT11
Definition: cqrt11.f:98
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:115
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: claset.f:106
subroutine cunm2r(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, INFO)
CUNM2R multiplies a general matrix by the unitary matrix from a QR factorization determined by cgeqrf...
Definition: cunm2r.f:159
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function: