LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cchkhe_rk()

subroutine cchkhe_rk ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
real  THRESH,
logical  TSTERR,
integer  NMAX,
complex, dimension( * )  A,
complex, dimension( * )  AFAC,
complex, dimension( * )  E,
complex, dimension( * )  AINV,
complex, dimension( * )  B,
complex, dimension( * )  X,
complex, dimension( * )  XACT,
complex, dimension( * )  WORK,
real, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

CCHKHE_RK

Purpose:
 CCHKHE_RK tests CHETRF_RK, -TRI_3, -TRS_3,
 and -CON_3.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]E
          E is COMPLEX array, dimension (NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is REAL array, dimension (max(NMAX,2*NSMAX)
[out]IWORK
          IWORK is INTEGER array, dimension (2*NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 174 of file cchkhe_rk.f.

177 *
178 * -- LAPACK test routine --
179 * -- LAPACK is a software package provided by Univ. of Tennessee, --
180 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
181 *
182 * .. Scalar Arguments ..
183  LOGICAL TSTERR
184  INTEGER NMAX, NN, NNB, NNS, NOUT
185  REAL THRESH
186 * ..
187 * .. Array Arguments ..
188  LOGICAL DOTYPE( * )
189  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
190  REAL RWORK( * )
191  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ), E( * ),
192  $ WORK( * ), X( * ), XACT( * )
193 * ..
194 *
195 * =====================================================================
196 *
197 * .. Parameters ..
198  REAL ZERO, ONE
199  parameter( zero = 0.0e+0, one = 1.0e+0 )
200  REAL ONEHALF
201  parameter( onehalf = 0.5e+0 )
202  REAL EIGHT, SEVTEN
203  parameter( eight = 8.0e+0, sevten = 17.0e+0 )
204  COMPLEX CZERO
205  parameter( czero = ( 0.0e+0, 0.0e+0 ) )
206  INTEGER NTYPES
207  parameter( ntypes = 10 )
208  INTEGER NTESTS
209  parameter( ntests = 7 )
210 * ..
211 * .. Local Scalars ..
212  LOGICAL TRFCON, ZEROT
213  CHARACTER DIST, TYPE, UPLO, XTYPE
214  CHARACTER*3 PATH, MATPATH
215  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
216  $ ITEMP, ITEMP2, IUPLO, IZERO, J, K, KL, KU, LDA,
217  $ LWORK, MODE, N, NB, NERRS, NFAIL, NIMAT, NRHS,
218  $ NRUN, NT
219  REAL ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
220  $ SING_MIN, RCOND, RCONDC, STEMP
221 * ..
222 * .. Local Arrays ..
223  CHARACTER UPLOS( 2 )
224  INTEGER ISEED( 4 ), ISEEDY( 4 ), IDUMMY( 1 )
225  REAL RESULT( NTESTS )
226  COMPLEX BLOCK( 2, 2 ), CDUMMY( 1 )
227 * ..
228 * .. External Functions ..
229  REAL CLANGE, CLANHE, SGET06
230  EXTERNAL clange, clanhe, sget06
231 * ..
232 * .. External Subroutines ..
233  EXTERNAL alaerh, alahd, alasum, cerrhe, cgesvd, cget04,
236  $ chetrs_3, xlaenv
237 * ..
238 * .. Intrinsic Functions ..
239  INTRINSIC conjg, max, min, sqrt
240 * ..
241 * .. Scalars in Common ..
242  LOGICAL LERR, OK
243  CHARACTER*32 SRNAMT
244  INTEGER INFOT, NUNIT
245 * ..
246 * .. Common blocks ..
247  COMMON / infoc / infot, nunit, ok, lerr
248  COMMON / srnamc / srnamt
249 * ..
250 * .. Data statements ..
251  DATA iseedy / 1988, 1989, 1990, 1991 /
252  DATA uplos / 'U', 'L' /
253 * ..
254 * .. Executable Statements ..
255 *
256 * Initialize constants and the random number seed.
257 *
258  alpha = ( one+sqrt( sevten ) ) / eight
259 *
260 * Test path
261 *
262  path( 1: 1 ) = 'Complex precision'
263  path( 2: 3 ) = 'HK'
264 *
265 * Path to generate matrices
266 *
267  matpath( 1: 1 ) = 'Complex precision'
268  matpath( 2: 3 ) = 'HE'
269 *
270  nrun = 0
271  nfail = 0
272  nerrs = 0
273  DO 10 i = 1, 4
274  iseed( i ) = iseedy( i )
275  10 CONTINUE
276 *
277 * Test the error exits
278 *
279  IF( tsterr )
280  $ CALL cerrhe( path, nout )
281  infot = 0
282 *
283 * Set the minimum block size for which the block routine should
284 * be used, which will be later returned by ILAENV
285 *
286  CALL xlaenv( 2, 2 )
287 *
288 * Do for each value of N in NVAL
289 *
290  DO 270 in = 1, nn
291  n = nval( in )
292  lda = max( n, 1 )
293  xtype = 'N'
294  nimat = ntypes
295  IF( n.LE.0 )
296  $ nimat = 1
297 *
298  izero = 0
299 *
300 * Do for each value of matrix type IMAT
301 *
302  DO 260 imat = 1, nimat
303 *
304 * Do the tests only if DOTYPE( IMAT ) is true.
305 *
306  IF( .NOT.dotype( imat ) )
307  $ GO TO 260
308 *
309 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
310 *
311  zerot = imat.GE.3 .AND. imat.LE.6
312  IF( zerot .AND. n.LT.imat-2 )
313  $ GO TO 260
314 *
315 * Do first for UPLO = 'U', then for UPLO = 'L'
316 *
317  DO 250 iuplo = 1, 2
318  uplo = uplos( iuplo )
319 *
320 * Begin generate the test matrix A.
321 *
322 * Set up parameters with CLATB4 for the matrix generator
323 * based on the type of matrix to be generated.
324 *
325  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
326  $ MODE, CNDNUM, DIST )
327 *
328 * Generate a matrix with CLATMS.
329 *
330  srnamt = 'CLATMS'
331  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
332  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
333  $ WORK, INFO )
334 *
335 * Check error code from CLATMS and handle error.
336 *
337  IF( info.NE.0 ) THEN
338  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
339  $ -1, -1, -1, imat, nfail, nerrs, nout )
340 *
341 * Skip all tests for this generated matrix
342 *
343  GO TO 250
344  END IF
345 *
346 * For matrix types 3-6, zero one or more rows and
347 * columns of the matrix to test that INFO is returned
348 * correctly.
349 *
350  IF( zerot ) THEN
351  IF( imat.EQ.3 ) THEN
352  izero = 1
353  ELSE IF( imat.EQ.4 ) THEN
354  izero = n
355  ELSE
356  izero = n / 2 + 1
357  END IF
358 *
359  IF( imat.LT.6 ) THEN
360 *
361 * Set row and column IZERO to zero.
362 *
363  IF( iuplo.EQ.1 ) THEN
364  ioff = ( izero-1 )*lda
365  DO 20 i = 1, izero - 1
366  a( ioff+i ) = czero
367  20 CONTINUE
368  ioff = ioff + izero
369  DO 30 i = izero, n
370  a( ioff ) = czero
371  ioff = ioff + lda
372  30 CONTINUE
373  ELSE
374  ioff = izero
375  DO 40 i = 1, izero - 1
376  a( ioff ) = czero
377  ioff = ioff + lda
378  40 CONTINUE
379  ioff = ioff - izero
380  DO 50 i = izero, n
381  a( ioff+i ) = czero
382  50 CONTINUE
383  END IF
384  ELSE
385  IF( iuplo.EQ.1 ) THEN
386 *
387 * Set the first IZERO rows and columns to zero.
388 *
389  ioff = 0
390  DO 70 j = 1, n
391  i2 = min( j, izero )
392  DO 60 i = 1, i2
393  a( ioff+i ) = czero
394  60 CONTINUE
395  ioff = ioff + lda
396  70 CONTINUE
397  ELSE
398 *
399 * Set the last IZERO rows and columns to zero.
400 *
401  ioff = 0
402  DO 90 j = 1, n
403  i1 = max( j, izero )
404  DO 80 i = i1, n
405  a( ioff+i ) = czero
406  80 CONTINUE
407  ioff = ioff + lda
408  90 CONTINUE
409  END IF
410  END IF
411  ELSE
412  izero = 0
413  END IF
414 *
415 * End generate the test matrix A.
416 *
417 *
418 * Do for each value of NB in NBVAL
419 *
420  DO 240 inb = 1, nnb
421 *
422 * Set the optimal blocksize, which will be later
423 * returned by ILAENV.
424 *
425  nb = nbval( inb )
426  CALL xlaenv( 1, nb )
427 *
428 * Copy the test matrix A into matrix AFAC which
429 * will be factorized in place. This is needed to
430 * preserve the test matrix A for subsequent tests.
431 *
432  CALL clacpy( uplo, n, n, a, lda, afac, lda )
433 *
434 * Compute the L*D*L**T or U*D*U**T factorization of the
435 * matrix. IWORK stores details of the interchanges and
436 * the block structure of D. AINV is a work array for
437 * block factorization, LWORK is the length of AINV.
438 *
439  lwork = max( 2, nb )*lda
440  srnamt = 'CHETRF_RK'
441  CALL chetrf_rk( uplo, n, afac, lda, e, iwork, ainv,
442  $ lwork, info )
443 *
444 * Adjust the expected value of INFO to account for
445 * pivoting.
446 *
447  k = izero
448  IF( k.GT.0 ) THEN
449  100 CONTINUE
450  IF( iwork( k ).LT.0 ) THEN
451  IF( iwork( k ).NE.-k ) THEN
452  k = -iwork( k )
453  GO TO 100
454  END IF
455  ELSE IF( iwork( k ).NE.k ) THEN
456  k = iwork( k )
457  GO TO 100
458  END IF
459  END IF
460 *
461 * Check error code from CHETRF_RK and handle error.
462 *
463  IF( info.NE.k)
464  $ CALL alaerh( path, 'CHETRF_RK', info, k,
465  $ uplo, n, n, -1, -1, nb, imat,
466  $ nfail, nerrs, nout )
467 *
468 * Set the condition estimate flag if the INFO is not 0.
469 *
470  IF( info.NE.0 ) THEN
471  trfcon = .true.
472  ELSE
473  trfcon = .false.
474  END IF
475 *
476 *+ TEST 1
477 * Reconstruct matrix from factors and compute residual.
478 *
479  CALL chet01_3( uplo, n, a, lda, afac, lda, e, iwork,
480  $ ainv, lda, rwork, result( 1 ) )
481  nt = 1
482 *
483 *+ TEST 2
484 * Form the inverse and compute the residual,
485 * if the factorization was competed without INFO > 0
486 * (i.e. there is no zero rows and columns).
487 * Do it only for the first block size.
488 *
489  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
490  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
491  srnamt = 'CHETRI_3'
492 *
493 * Another reason that we need to compute the inverse
494 * is that CPOT03 produces RCONDC which is used later
495 * in TEST6 and TEST7.
496 *
497  lwork = (n+nb+1)*(nb+3)
498  CALL chetri_3( uplo, n, ainv, lda, e, iwork, work,
499  $ lwork, info )
500 *
501 * Check error code from ZHETRI_3 and handle error.
502 *
503  IF( info.NE.0 )
504  $ CALL alaerh( path, 'CHETRI_3', info, -1,
505  $ uplo, n, n, -1, -1, -1, imat,
506  $ nfail, nerrs, nout )
507 *
508 * Compute the residual for a Hermitian matrix times
509 * its inverse.
510 *
511  CALL cpot03( uplo, n, a, lda, ainv, lda, work, lda,
512  $ rwork, rcondc, result( 2 ) )
513  nt = 2
514  END IF
515 *
516 * Print information about the tests that did not pass
517 * the threshold.
518 *
519  DO 110 k = 1, nt
520  IF( result( k ).GE.thresh ) THEN
521  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
522  $ CALL alahd( nout, path )
523  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
524  $ result( k )
525  nfail = nfail + 1
526  END IF
527  110 CONTINUE
528  nrun = nrun + nt
529 *
530 *+ TEST 3
531 * Compute largest element in U or L
532 *
533  result( 3 ) = zero
534  stemp = zero
535 *
536  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
537  $ ( one-alpha )
538 *
539  IF( iuplo.EQ.1 ) THEN
540 *
541 * Compute largest element in U
542 *
543  k = n
544  120 CONTINUE
545  IF( k.LE.1 )
546  $ GO TO 130
547 *
548  IF( iwork( k ).GT.zero ) THEN
549 *
550 * Get max absolute value from elements
551 * in column k in U
552 *
553  stemp = clange( 'M', k-1, 1,
554  $ afac( ( k-1 )*lda+1 ), lda, rwork )
555  ELSE
556 *
557 * Get max absolute value from elements
558 * in columns k and k-1 in U
559 *
560  stemp = clange( 'M', k-2, 2,
561  $ afac( ( k-2 )*lda+1 ), lda, rwork )
562  k = k - 1
563 *
564  END IF
565 *
566 * STEMP should be bounded by CONST
567 *
568  stemp = stemp - const + thresh
569  IF( stemp.GT.result( 3 ) )
570  $ result( 3 ) = stemp
571 *
572  k = k - 1
573 *
574  GO TO 120
575  130 CONTINUE
576 *
577  ELSE
578 *
579 * Compute largest element in L
580 *
581  k = 1
582  140 CONTINUE
583  IF( k.GE.n )
584  $ GO TO 150
585 *
586  IF( iwork( k ).GT.zero ) THEN
587 *
588 * Get max absolute value from elements
589 * in column k in L
590 *
591  stemp = clange( 'M', n-k, 1,
592  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
593  ELSE
594 *
595 * Get max absolute value from elements
596 * in columns k and k+1 in L
597 *
598  stemp = clange( 'M', n-k-1, 2,
599  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
600  k = k + 1
601 *
602  END IF
603 *
604 * STEMP should be bounded by CONST
605 *
606  stemp = stemp - const + thresh
607  IF( stemp.GT.result( 3 ) )
608  $ result( 3 ) = stemp
609 *
610  k = k + 1
611 *
612  GO TO 140
613  150 CONTINUE
614  END IF
615 *
616 *
617 *+ TEST 4
618 * Compute largest 2-Norm (condition number)
619 * of 2-by-2 diag blocks
620 *
621  result( 4 ) = zero
622  stemp = zero
623 *
624  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
625  $ ( ( one + alpha ) / ( one - alpha ) )
626  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
627 *
628  IF( iuplo.EQ.1 ) THEN
629 *
630 * Loop backward for UPLO = 'U'
631 *
632  k = n
633  160 CONTINUE
634  IF( k.LE.1 )
635  $ GO TO 170
636 *
637  IF( iwork( k ).LT.zero ) THEN
638 *
639 * Get the two singular values
640 * (real and non-negative) of a 2-by-2 block,
641 * store them in RWORK array
642 *
643  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
644  block( 1, 2 ) = e( k )
645  block( 2, 1 ) = conjg( block( 1, 2 ) )
646  block( 2, 2 ) = afac( (k-1)*lda+k )
647 *
648  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
649  $ cdummy, 1, cdummy, 1,
650  $ work, 6, rwork( 3 ), info )
651 *
652 *
653  sing_max = rwork( 1 )
654  sing_min = rwork( 2 )
655 *
656  stemp = sing_max / sing_min
657 *
658 * STEMP should be bounded by CONST
659 *
660  stemp = stemp - const + thresh
661  IF( stemp.GT.result( 4 ) )
662  $ result( 4 ) = stemp
663  k = k - 1
664 *
665  END IF
666 *
667  k = k - 1
668 *
669  GO TO 160
670  170 CONTINUE
671 *
672  ELSE
673 *
674 * Loop forward for UPLO = 'L'
675 *
676  k = 1
677  180 CONTINUE
678  IF( k.GE.n )
679  $ GO TO 190
680 *
681  IF( iwork( k ).LT.zero ) THEN
682 *
683 * Get the two singular values
684 * (real and non-negative) of a 2-by-2 block,
685 * store them in RWORK array
686 *
687  block( 1, 1 ) = afac( ( k-1 )*lda+k )
688  block( 2, 1 ) = e( k )
689  block( 1, 2 ) = conjg( block( 2, 1 ) )
690  block( 2, 2 ) = afac( k*lda+k+1 )
691 *
692  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
693  $ cdummy, 1, cdummy, 1,
694  $ work, 6, rwork(3), info )
695 *
696  sing_max = rwork( 1 )
697  sing_min = rwork( 2 )
698 *
699  stemp = sing_max / sing_min
700 *
701 * STEMP should be bounded by CONST
702 *
703  stemp = stemp - const + thresh
704  IF( stemp.GT.result( 4 ) )
705  $ result( 4 ) = stemp
706  k = k + 1
707 *
708  END IF
709 *
710  k = k + 1
711 *
712  GO TO 180
713  190 CONTINUE
714  END IF
715 *
716 * Print information about the tests that did not pass
717 * the threshold.
718 *
719  DO 200 k = 3, 4
720  IF( result( k ).GE.thresh ) THEN
721  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
722  $ CALL alahd( nout, path )
723  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
724  $ result( k )
725  nfail = nfail + 1
726  END IF
727  200 CONTINUE
728  nrun = nrun + 2
729 *
730 * Skip the other tests if this is not the first block
731 * size.
732 *
733  IF( inb.GT.1 )
734  $ GO TO 240
735 *
736 * Do only the condition estimate if INFO is not 0.
737 *
738  IF( trfcon ) THEN
739  rcondc = zero
740  GO TO 230
741  END IF
742 *
743 * Do for each value of NRHS in NSVAL.
744 *
745  DO 220 irhs = 1, nns
746  nrhs = nsval( irhs )
747 *
748 * Begin loop over NRHS values
749 *
750 *
751 *+ TEST 5 ( Using TRS_3)
752 * Solve and compute residual for A * X = B.
753 *
754 * Choose a set of NRHS random solution vectors
755 * stored in XACT and set up the right hand side B
756 *
757  srnamt = 'CLARHS'
758  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
759  $ kl, ku, nrhs, a, lda, xact, lda,
760  $ b, lda, iseed, info )
761  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
762 *
763  srnamt = 'CHETRS_3'
764  CALL chetrs_3( uplo, n, nrhs, afac, lda, e, iwork,
765  $ x, lda, info )
766 *
767 * Check error code from CHETRS_3 and handle error.
768 *
769  IF( info.NE.0 )
770  $ CALL alaerh( path, 'CHETRS_3', info, 0,
771  $ uplo, n, n, -1, -1, nrhs, imat,
772  $ nfail, nerrs, nout )
773 *
774  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
775 *
776 * Compute the residual for the solution
777 *
778  CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
779  $ lda, rwork, result( 5 ) )
780 *
781 *+ TEST 6
782 * Check solution from generated exact solution.
783 *
784  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
785  $ result( 6 ) )
786 *
787 * Print information about the tests that did not pass
788 * the threshold.
789 *
790  DO 210 k = 5, 6
791  IF( result( k ).GE.thresh ) THEN
792  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
793  $ CALL alahd( nout, path )
794  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
795  $ imat, k, result( k )
796  nfail = nfail + 1
797  END IF
798  210 CONTINUE
799  nrun = nrun + 2
800 *
801 * End do for each value of NRHS in NSVAL.
802 *
803  220 CONTINUE
804 *
805 *+ TEST 7
806 * Get an estimate of RCOND = 1/CNDNUM.
807 *
808  230 CONTINUE
809  anorm = clanhe( '1', uplo, n, a, lda, rwork )
810  srnamt = 'CHECON_3'
811  CALL checon_3( uplo, n, afac, lda, e, iwork, anorm,
812  $ rcond, work, info )
813 *
814 * Check error code from CHECON_3 and handle error.
815 *
816  IF( info.NE.0 )
817  $ CALL alaerh( path, 'CHECON_3', info, 0,
818  $ uplo, n, n, -1, -1, -1, imat,
819  $ nfail, nerrs, nout )
820 *
821 * Compute the test ratio to compare values of RCOND
822 *
823  result( 7 ) = sget06( rcond, rcondc )
824 *
825 * Print information about the tests that did not pass
826 * the threshold.
827 *
828  IF( result( 7 ).GE.thresh ) THEN
829  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
830  $ CALL alahd( nout, path )
831  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
832  $ result( 7 )
833  nfail = nfail + 1
834  END IF
835  nrun = nrun + 1
836  240 CONTINUE
837 *
838  250 CONTINUE
839  260 CONTINUE
840  270 CONTINUE
841 *
842 * Print a summary of the results.
843 *
844  CALL alasum( path, nout, nfail, nrun, nerrs )
845 *
846  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
847  $ i2, ', test ', i2, ', ratio =', g12.5 )
848  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
849  $ i2, ', test ', i2, ', ratio =', g12.5 )
850  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
851  $ ', test ', i2, ', ratio =', g12.5 )
852  RETURN
853 *
854 * End of CCHKHE_RK
855 *
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:208
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:121
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:102
subroutine cerrhe(PATH, NUNIT)
CERRHE
Definition: cerrhe.f:55
subroutine cpot03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CPOT03
Definition: cpot03.f:126
subroutine chet01_3(UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C, LDC, RWORK, RESID)
CHET01_3
Definition: chet01_3.f:141
subroutine cpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CPOT02
Definition: cpot02.f:127
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:332
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition: clange.f:115
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:214
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: clanhe.f:124
subroutine chetri_3(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRI_3
Definition: chetri_3.f:170
subroutine chetrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
CHETRF_RK computes the factorization of a complex Hermitian indefinite matrix using the bounded Bunch...
Definition: chetrf_rk.f:259
subroutine checon_3(UPLO, N, A, LDA, E, IPIV, ANORM, RCOND, WORK, INFO)
CHECON_3
Definition: checon_3.f:166
subroutine chetrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
CHETRS_3
Definition: chetrs_3.f:165
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:103
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: