|  | LAPACK 3.12.1
    LAPACK: Linear Algebra PACKage | 
| subroutine dlaed5 | ( | integer | i, | 
| double precision, dimension( 2 ) | d, | ||
| double precision, dimension( 2 ) | z, | ||
| double precision, dimension( 2 ) | delta, | ||
| double precision | rho, | ||
| double precision | dlam ) | 
DLAED5 used by DSTEDC. Solves the 2-by-2 secular equation.
Download DLAED5 + dependencies [TGZ] [ZIP] [TXT]
!> !> This subroutine computes the I-th eigenvalue of a symmetric rank-one !> modification of a 2-by-2 diagonal matrix !> !> diag( D ) + RHO * Z * transpose(Z) . !> !> The diagonal elements in the array D are assumed to satisfy !> !> D(i) < D(j) for i < j . !> !> We also assume RHO > 0 and that the Euclidean norm of the vector !> Z is one. !>
| [in] | I | !> I is INTEGER !> The index of the eigenvalue to be computed. I = 1 or I = 2. !> | 
| [in] | D | !> D is DOUBLE PRECISION array, dimension (2) !> The original eigenvalues. We assume D(1) < D(2). !> | 
| [in] | Z | !> Z is DOUBLE PRECISION array, dimension (2) !> The components of the updating vector. !> | 
| [out] | DELTA | !> DELTA is DOUBLE PRECISION array, dimension (2) !> The vector DELTA contains the information necessary !> to construct the eigenvectors. !> | 
| [in] | RHO | !> RHO is DOUBLE PRECISION !> The scalar in the symmetric updating formula. !> | 
| [out] | DLAM | !> DLAM is DOUBLE PRECISION !> The computed lambda_I, the I-th updated eigenvalue. !> | 
Definition at line 105 of file dlaed5.f.