174 SUBROUTINE ztplqt2( M, N, L, A, LDA, B, LDB, T, LDT, INFO )
181 INTEGER INFO, LDA, LDB, LDT, N, M, L
184 COMPLEX*16 A( LDA, * ), B( LDB, * ), T( LDT, * )
191 parameter( zero = ( 0.0d+0, 0.0d+0 ),one = ( 1.0d+0, 0.0d+0 ) )
194 INTEGER I, J, P, MP, NP
210 ELSE IF( n.LT.0 )
THEN
212 ELSE IF( l.LT.0 .OR. l.GT.min(m,n) )
THEN
214 ELSE IF( lda.LT.max( 1, m ) )
THEN
216 ELSE IF( ldb.LT.max( 1, m ) )
THEN
218 ELSE IF( ldt.LT.max( 1, m ) )
THEN
222 CALL xerbla(
'ZTPLQT2', -info )
228 IF( n.EQ.0 .OR. m.EQ.0 )
RETURN
235 CALL zlarfg( p+1, a( i, i ), b( i, 1 ), ldb, t( 1, i ) )
239 b( i, j ) = conjg(b(i,j))
245 t( m, j ) = (a( i+j, i ))
247 CALL zgemv(
'N', m-i, p, one, b( i+1, 1 ), ldb,
248 $ b( i, 1 ), ldb, one, t( m, 1 ), ldt )
254 a( i+j, i ) = a( i+j, i ) + alpha*(t( m, j ))
256 CALL zgerc( m-i, p, (alpha), t( m, 1 ), ldt,
257 $ b( i, 1 ), ldb, b( i+1, 1 ), ldb )
259 b( i, j ) = conjg(b(i,j))
282 t( i, j ) = (alpha*b( i, n-l+j ))
284 CALL ztrmv(
'L',
'N',
'N', p, b( 1, np ), ldb,
289 CALL zgemv(
'N', i-1-p, l, alpha, b( mp, np ), ldb,
290 $ b( i, np ), ldb, zero, t( i,mp ), ldt )
295 CALL zgemv(
'N', i-1, n-l, alpha, b, ldb, b( i, 1 ), ldb,
296 $ one, t( i, 1 ), ldt )
305 CALL ztrmv(
'L',
'C',
'N', i-1, t, ldt, t( i, 1 ), ldt )
315 t( i, i ) = t( 1, i )
subroutine zgemv(trans, m, n, alpha, a, lda, x, incx, beta, y, incy)
ZGEMV
subroutine ztplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
ZTPLQT2 computes a LQ factorization of a real or complex "triangular-pentagonal" matrix,...