LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cheevx_2stage()

subroutine cheevx_2stage ( character jobz,
character range,
character uplo,
integer n,
complex, dimension( lda, * ) a,
integer lda,
real vl,
real vu,
integer il,
integer iu,
real abstol,
integer m,
real, dimension( * ) w,
complex, dimension( ldz, * ) z,
integer ldz,
complex, dimension( * ) work,
integer lwork,
real, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer, dimension( * ) ifail,
integer info )

CHEEVX_2STAGE computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices

Download CHEEVX_2STAGE + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CHEEVX_2STAGE computes selected eigenvalues and, optionally, eigenvectors
!> of a complex Hermitian matrix A using the 2stage technique for
!> the reduction to tridiagonal.  Eigenvalues and eigenvectors can
!> be selected by specifying either a range of values or a range of
!> indices for the desired eigenvalues.
!> 
Parameters
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!>                  Not available in this release.
!> 
[in]RANGE
!>          RANGE is CHARACTER*1
!>          = 'A': all eigenvalues will be found.
!>          = 'V': all eigenvalues in the half-open interval (VL,VU]
!>                 will be found.
!>          = 'I': the IL-th through IU-th eigenvalues will be found.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA, N)
!>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
!>          leading N-by-N upper triangular part of A contains the
!>          upper triangular part of the matrix A.  If UPLO = 'L',
!>          the leading N-by-N lower triangular part of A contains
!>          the lower triangular part of the matrix A.
!>          On exit, the lower triangle (if UPLO='L') or the upper
!>          triangle (if UPLO='U') of A, including the diagonal, is
!>          destroyed.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in]VL
!>          VL is REAL
!>          If RANGE='V', the lower bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]VU
!>          VU is REAL
!>          If RANGE='V', the upper bound of the interval to
!>          be searched for eigenvalues. VL < VU.
!>          Not referenced if RANGE = 'A' or 'I'.
!> 
[in]IL
!>          IL is INTEGER
!>          If RANGE='I', the index of the
!>          smallest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]IU
!>          IU is INTEGER
!>          If RANGE='I', the index of the
!>          largest eigenvalue to be returned.
!>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
!>          Not referenced if RANGE = 'A' or 'V'.
!> 
[in]ABSTOL
!>          ABSTOL is REAL
!>          The absolute error tolerance for the eigenvalues.
!>          An approximate eigenvalue is accepted as converged
!>          when it is determined to lie in an interval [a,b]
!>          of width less than or equal to
!>
!>                  ABSTOL + EPS *   max( |a|,|b| ) ,
!>
!>          where EPS is the machine precision.  If ABSTOL is less than
!>          or equal to zero, then  EPS*|T|  will be used in its place,
!>          where |T| is the 1-norm of the tridiagonal matrix obtained
!>          by reducing A to tridiagonal form.
!>
!>          Eigenvalues will be computed most accurately when ABSTOL is
!>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
!>          If this routine returns with INFO>0, indicating that some
!>          eigenvectors did not converge, try setting ABSTOL to
!>          2*SLAMCH('S').
!>
!>          See  by Demmel and
!>          Kahan, LAPACK Working Note #3.
!> 
[out]M
!>          M is INTEGER
!>          The total number of eigenvalues found.  0 <= M <= N.
!>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          On normal exit, the first M elements contain the selected
!>          eigenvalues in ascending order.
!> 
[out]Z
!>          Z is COMPLEX array, dimension (LDZ, max(1,M))
!>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
!>          contain the orthonormal eigenvectors of the matrix A
!>          corresponding to the selected eigenvalues, with the i-th
!>          column of Z holding the eigenvector associated with W(i).
!>          If an eigenvector fails to converge, then that column of Z
!>          contains the latest approximation to the eigenvector, and the
!>          index of the eigenvector is returned in IFAIL.
!>          If JOBZ = 'N', then Z is not referenced.
!>          Note: the user must ensure that at least max(1,M) columns are
!>          supplied in the array Z; if RANGE = 'V', the exact value of M
!>          is not known in advance and an upper bound must be used.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK. LWORK >= 1, when N <= 1;
!>          otherwise
!>          If JOBZ = 'N' and N > 1, LWORK must be queried.
!>                                   LWORK = MAX(1, 8*N, dimension) where
!>                                   dimension = max(stage1,stage2) + (KD+1)*N + N
!>                                             = N*KD + N*max(KD+1,FACTOPTNB)
!>                                               + max(2*KD*KD, KD*NTHREADS)
!>                                               + (KD+1)*N + N
!>                                   where KD is the blocking size of the reduction,
!>                                   FACTOPTNB is the blocking used by the QR or LQ
!>                                   algorithm, usually FACTOPTNB=128 is a good choice
!>                                   NTHREADS is the number of threads used when
!>                                   openMP compilation is enabled, otherwise =1.
!>          If JOBZ = 'V' and N > 1, LWORK must be queried. Not yet available
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (7*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (5*N)
!> 
[out]IFAIL
!>          IFAIL is INTEGER array, dimension (N)
!>          If JOBZ = 'V', then if INFO = 0, the first M elements of
!>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
!>          indices of the eigenvectors that failed to converge.
!>          If JOBZ = 'N', then IFAIL is not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  if INFO = i, then i eigenvectors failed to converge.
!>                Their indices are stored in array IFAIL.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  All details about the 2stage techniques are available in:
!>
!>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
!>  Parallel reduction to condensed forms for symmetric eigenvalue problems
!>  using aggregated fine-grained and memory-aware kernels. In Proceedings
!>  of 2011 International Conference for High Performance Computing,
!>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
!>  Article 8 , 11 pages.
!>  http://doi.acm.org/10.1145/2063384.2063394
!>
!>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
!>  An improved parallel singular value algorithm and its implementation
!>  for multicore hardware, In Proceedings of 2013 International Conference
!>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
!>  Denver, Colorado, USA, 2013.
!>  Article 90, 12 pages.
!>  http://doi.acm.org/10.1145/2503210.2503292
!>
!>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
!>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
!>  calculations based on fine-grained memory aware tasks.
!>  International Journal of High Performance Computing Applications.
!>  Volume 28 Issue 2, Pages 196-209, May 2014.
!>  http://hpc.sagepub.com/content/28/2/196
!>
!> 

Definition at line 301 of file cheevx_2stage.f.

304*
305 IMPLICIT NONE
306*
307* -- LAPACK driver routine --
308* -- LAPACK is a software package provided by Univ. of Tennessee, --
309* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
310*
311* .. Scalar Arguments ..
312 CHARACTER JOBZ, RANGE, UPLO
313 INTEGER IL, INFO, IU, LDA, LDZ, LWORK, M, N
314 REAL ABSTOL, VL, VU
315* ..
316* .. Array Arguments ..
317 INTEGER IFAIL( * ), IWORK( * )
318 REAL RWORK( * ), W( * )
319 COMPLEX A( LDA, * ), WORK( * ), Z( LDZ, * )
320* ..
321*
322* =====================================================================
323*
324* .. Parameters ..
325 REAL ZERO, ONE
326 parameter( zero = 0.0e+0, one = 1.0e+0 )
327 COMPLEX CONE
328 parameter( cone = ( 1.0e+0, 0.0e+0 ) )
329* ..
330* .. Local Scalars ..
331 LOGICAL ALLEIG, INDEIG, LOWER, LQUERY, TEST, VALEIG,
332 $ WANTZ
333 CHARACTER ORDER
334 INTEGER I, IINFO, IMAX, INDD, INDE, INDEE, INDIBL,
335 $ INDISP, INDIWK, INDRWK, INDTAU, INDWRK, ISCALE,
336 $ ITMP1, J, JJ, LLWORK,
337 $ NSPLIT, LWMIN, LHTRD, LWTRD, KD, IB, INDHOUS
338 REAL ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
339 $ SIGMA, SMLNUM, TMP1, VLL, VUU
340* ..
341* .. External Functions ..
342 LOGICAL LSAME
343 INTEGER ILAENV2STAGE
344 REAL SLAMCH, CLANHE, SROUNDUP_LWORK
345 EXTERNAL lsame, slamch, clanhe, ilaenv2stage,
347* ..
348* .. External Subroutines ..
349 EXTERNAL scopy, sscal, sstebz, ssterf, xerbla,
350 $ csscal,
353* ..
354* .. Intrinsic Functions ..
355 INTRINSIC real, max, min, sqrt
356* ..
357* .. Executable Statements ..
358*
359* Test the input parameters.
360*
361 lower = lsame( uplo, 'L' )
362 wantz = lsame( jobz, 'V' )
363 alleig = lsame( range, 'A' )
364 valeig = lsame( range, 'V' )
365 indeig = lsame( range, 'I' )
366 lquery = ( lwork.EQ.-1 )
367*
368 info = 0
369 IF( .NOT.( lsame( jobz, 'N' ) ) ) THEN
370 info = -1
371 ELSE IF( .NOT.( alleig .OR. valeig .OR. indeig ) ) THEN
372 info = -2
373 ELSE IF( .NOT.( lower .OR. lsame( uplo, 'U' ) ) ) THEN
374 info = -3
375 ELSE IF( n.LT.0 ) THEN
376 info = -4
377 ELSE IF( lda.LT.max( 1, n ) ) THEN
378 info = -6
379 ELSE
380 IF( valeig ) THEN
381 IF( n.GT.0 .AND. vu.LE.vl )
382 $ info = -8
383 ELSE IF( indeig ) THEN
384 IF( il.LT.1 .OR. il.GT.max( 1, n ) ) THEN
385 info = -9
386 ELSE IF( iu.LT.min( n, il ) .OR. iu.GT.n ) THEN
387 info = -10
388 END IF
389 END IF
390 END IF
391 IF( info.EQ.0 ) THEN
392 IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
393 info = -15
394 END IF
395 END IF
396*
397 IF( info.EQ.0 ) THEN
398 IF( n.LE.1 ) THEN
399 lwmin = 1
400 work( 1 ) = sroundup_lwork(lwmin)
401 ELSE
402 kd = ilaenv2stage( 1, 'CHETRD_2STAGE', jobz,
403 $ n, -1, -1, -1 )
404 ib = ilaenv2stage( 2, 'CHETRD_2STAGE', jobz,
405 $ n, kd, -1, -1 )
406 lhtrd = ilaenv2stage( 3, 'CHETRD_2STAGE', jobz,
407 $ n, kd, ib, -1 )
408 lwtrd = ilaenv2stage( 4, 'CHETRD_2STAGE', jobz,
409 $ n, kd, ib, -1 )
410 lwmin = n + lhtrd + lwtrd
411 work( 1 ) = sroundup_lwork(lwmin)
412 END IF
413*
414 IF( lwork.LT.lwmin .AND. .NOT.lquery )
415 $ info = -17
416 END IF
417*
418 IF( info.NE.0 ) THEN
419 CALL xerbla( 'CHEEVX_2STAGE', -info )
420 RETURN
421 ELSE IF( lquery ) THEN
422 RETURN
423 END IF
424*
425* Quick return if possible
426*
427 m = 0
428 IF( n.EQ.0 ) THEN
429 RETURN
430 END IF
431*
432 IF( n.EQ.1 ) THEN
433 IF( alleig .OR. indeig ) THEN
434 m = 1
435 w( 1 ) = real( a( 1, 1 ) )
436 ELSE IF( valeig ) THEN
437 IF( vl.LT.real( a( 1, 1 ) ) .AND. vu.GE.real( a( 1, 1 ) ) )
438 $ THEN
439 m = 1
440 w( 1 ) = real( a( 1, 1 ) )
441 END IF
442 END IF
443 IF( wantz )
444 $ z( 1, 1 ) = cone
445 RETURN
446 END IF
447*
448* Get machine constants.
449*
450 safmin = slamch( 'Safe minimum' )
451 eps = slamch( 'Precision' )
452 smlnum = safmin / eps
453 bignum = one / smlnum
454 rmin = sqrt( smlnum )
455 rmax = min( sqrt( bignum ), one / sqrt( sqrt( safmin ) ) )
456*
457* Scale matrix to allowable range, if necessary.
458*
459 iscale = 0
460 abstll = abstol
461 IF( valeig ) THEN
462 vll = vl
463 vuu = vu
464 END IF
465 anrm = clanhe( 'M', uplo, n, a, lda, rwork )
466 IF( anrm.GT.zero .AND. anrm.LT.rmin ) THEN
467 iscale = 1
468 sigma = rmin / anrm
469 ELSE IF( anrm.GT.rmax ) THEN
470 iscale = 1
471 sigma = rmax / anrm
472 END IF
473 IF( iscale.EQ.1 ) THEN
474 IF( lower ) THEN
475 DO 10 j = 1, n
476 CALL csscal( n-j+1, sigma, a( j, j ), 1 )
477 10 CONTINUE
478 ELSE
479 DO 20 j = 1, n
480 CALL csscal( j, sigma, a( 1, j ), 1 )
481 20 CONTINUE
482 END IF
483 IF( abstol.GT.0 )
484 $ abstll = abstol*sigma
485 IF( valeig ) THEN
486 vll = vl*sigma
487 vuu = vu*sigma
488 END IF
489 END IF
490*
491* Call CHETRD_2STAGE to reduce Hermitian matrix to tridiagonal form.
492*
493 indd = 1
494 inde = indd + n
495 indrwk = inde + n
496 indtau = 1
497 indhous = indtau + n
498 indwrk = indhous + lhtrd
499 llwork = lwork - indwrk + 1
500*
501 CALL chetrd_2stage( jobz, uplo, n, a, lda, rwork( indd ),
502 $ rwork( inde ), work( indtau ),
503 $ work( indhous ), lhtrd, work( indwrk ),
504 $ llwork, iinfo )
505*
506* If all eigenvalues are desired and ABSTOL is less than or equal to
507* zero, then call SSTERF or CUNGTR and CSTEQR. If this fails for
508* some eigenvalue, then try SSTEBZ.
509*
510 test = .false.
511 IF( indeig ) THEN
512 IF( il.EQ.1 .AND. iu.EQ.n ) THEN
513 test = .true.
514 END IF
515 END IF
516 IF( ( alleig .OR. test ) .AND. ( abstol.LE.zero ) ) THEN
517 CALL scopy( n, rwork( indd ), 1, w, 1 )
518 indee = indrwk + 2*n
519 IF( .NOT.wantz ) THEN
520 CALL scopy( n-1, rwork( inde ), 1, rwork( indee ), 1 )
521 CALL ssterf( n, w, rwork( indee ), info )
522 ELSE
523 CALL clacpy( 'A', n, n, a, lda, z, ldz )
524 CALL cungtr( uplo, n, z, ldz, work( indtau ),
525 $ work( indwrk ), llwork, iinfo )
526 CALL scopy( n-1, rwork( inde ), 1, rwork( indee ), 1 )
527 CALL csteqr( jobz, n, w, rwork( indee ), z, ldz,
528 $ rwork( indrwk ), info )
529 IF( info.EQ.0 ) THEN
530 DO 30 i = 1, n
531 ifail( i ) = 0
532 30 CONTINUE
533 END IF
534 END IF
535 IF( info.EQ.0 ) THEN
536 m = n
537 GO TO 40
538 END IF
539 info = 0
540 END IF
541*
542* Otherwise, call SSTEBZ and, if eigenvectors are desired, CSTEIN.
543*
544 IF( wantz ) THEN
545 order = 'B'
546 ELSE
547 order = 'E'
548 END IF
549 indibl = 1
550 indisp = indibl + n
551 indiwk = indisp + n
552 CALL sstebz( range, order, n, vll, vuu, il, iu, abstll,
553 $ rwork( indd ), rwork( inde ), m, nsplit, w,
554 $ iwork( indibl ), iwork( indisp ), rwork( indrwk ),
555 $ iwork( indiwk ), info )
556*
557 IF( wantz ) THEN
558 CALL cstein( n, rwork( indd ), rwork( inde ), m, w,
559 $ iwork( indibl ), iwork( indisp ), z, ldz,
560 $ rwork( indrwk ), iwork( indiwk ), ifail, info )
561*
562* Apply unitary matrix used in reduction to tridiagonal
563* form to eigenvectors returned by CSTEIN.
564*
565 CALL cunmtr( 'L', uplo, 'N', n, m, a, lda, work( indtau ),
566 $ z,
567 $ ldz, work( indwrk ), llwork, iinfo )
568 END IF
569*
570* If matrix was scaled, then rescale eigenvalues appropriately.
571*
572 40 CONTINUE
573 IF( iscale.EQ.1 ) THEN
574 IF( info.EQ.0 ) THEN
575 imax = m
576 ELSE
577 imax = info - 1
578 END IF
579 CALL sscal( imax, one / sigma, w, 1 )
580 END IF
581*
582* If eigenvalues are not in order, then sort them, along with
583* eigenvectors.
584*
585 IF( wantz ) THEN
586 DO 60 j = 1, m - 1
587 i = 0
588 tmp1 = w( j )
589 DO 50 jj = j + 1, m
590 IF( w( jj ).LT.tmp1 ) THEN
591 i = jj
592 tmp1 = w( jj )
593 END IF
594 50 CONTINUE
595*
596 IF( i.NE.0 ) THEN
597 itmp1 = iwork( indibl+i-1 )
598 w( i ) = w( j )
599 iwork( indibl+i-1 ) = iwork( indibl+j-1 )
600 w( j ) = tmp1
601 iwork( indibl+j-1 ) = itmp1
602 CALL cswap( n, z( 1, i ), 1, z( 1, j ), 1 )
603 IF( info.NE.0 ) THEN
604 itmp1 = ifail( i )
605 ifail( i ) = ifail( j )
606 ifail( j ) = itmp1
607 END IF
608 END IF
609 60 CONTINUE
610 END IF
611*
612* Set WORK(1) to optimal complex workspace size.
613*
614 work( 1 ) = sroundup_lwork(lwmin)
615*
616 RETURN
617*
618* End of CHEEVX_2STAGE
619*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine scopy(n, sx, incx, sy, incy)
SCOPY
Definition scopy.f:82
subroutine chetrd_2stage(vect, uplo, n, a, lda, d, e, tau, hous2, lhous2, work, lwork, info)
CHETRD_2STAGE
integer function ilaenv2stage(ispec, name, opts, n1, n2, n3, n4)
ILAENV2STAGE
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clanhe(norm, uplo, n, a, lda, work)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhe.f:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine csscal(n, sa, cx, incx)
CSSCAL
Definition csscal.f:78
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine sstebz(range, order, n, vl, vu, il, iu, abstol, d, e, m, nsplit, w, iblock, isplit, work, iwork, info)
SSTEBZ
Definition sstebz.f:272
subroutine cstein(n, d, e, m, w, iblock, isplit, z, ldz, work, iwork, ifail, info)
CSTEIN
Definition cstein.f:180
subroutine csteqr(compz, n, d, e, z, ldz, work, info)
CSTEQR
Definition csteqr.f:130
subroutine ssterf(n, d, e, info)
SSTERF
Definition ssterf.f:84
subroutine cswap(n, cx, incx, cy, incy)
CSWAP
Definition cswap.f:81
subroutine cungtr(uplo, n, a, lda, tau, work, lwork, info)
CUNGTR
Definition cungtr.f:121
subroutine cunmtr(side, uplo, trans, m, n, a, lda, tau, c, ldc, work, lwork, info)
CUNMTR
Definition cunmtr.f:171
Here is the call graph for this function:
Here is the caller graph for this function: