LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zgetf2()

 subroutine zgetf2 ( integer M, integer N, complex*16, dimension( lda, * ) A, integer LDA, integer, dimension( * ) IPIV, integer INFO )

ZGETF2 computes the LU factorization of a general m-by-n matrix using partial pivoting with row interchanges (unblocked algorithm).

Purpose:
``` ZGETF2 computes an LU factorization of a general m-by-n matrix A
using partial pivoting with row interchanges.

The factorization has the form
A = P * L * U
where P is a permutation matrix, L is lower triangular with unit
diagonal elements (lower trapezoidal if m > n), and U is upper
triangular (upper trapezoidal if m < n).

This is the right-looking Level 2 BLAS version of the algorithm.```
Parameters
 [in] M ``` M is INTEGER The number of rows of the matrix A. M >= 0.``` [in] N ``` N is INTEGER The number of columns of the matrix A. N >= 0.``` [in,out] A ``` A is COMPLEX*16 array, dimension (LDA,N) On entry, the m by n matrix to be factored. On exit, the factors L and U from the factorization A = P*L*U; the unit diagonal elements of L are not stored.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).``` [out] IPIV ``` IPIV is INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: if INFO = -k, the k-th argument had an illegal value > 0: if INFO = k, U(k,k) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.```

Definition at line 107 of file zgetf2.f.

108*
109* -- LAPACK computational routine --
110* -- LAPACK is a software package provided by Univ. of Tennessee, --
111* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112*
113* .. Scalar Arguments ..
114 INTEGER INFO, LDA, M, N
115* ..
116* .. Array Arguments ..
117 INTEGER IPIV( * )
118 COMPLEX*16 A( LDA, * )
119* ..
120*
121* =====================================================================
122*
123* .. Parameters ..
124 COMPLEX*16 ONE, ZERO
125 parameter( one = ( 1.0d+0, 0.0d+0 ),
126 \$ zero = ( 0.0d+0, 0.0d+0 ) )
127* ..
128* .. Local Scalars ..
129 DOUBLE PRECISION SFMIN
130 INTEGER I, J, JP
131* ..
132* .. External Functions ..
133 DOUBLE PRECISION DLAMCH
134 INTEGER IZAMAX
135 EXTERNAL dlamch, izamax
136* ..
137* .. External Subroutines ..
138 EXTERNAL xerbla, zgeru, zscal, zswap
139* ..
140* .. Intrinsic Functions ..
141 INTRINSIC max, min
142* ..
143* .. Executable Statements ..
144*
145* Test the input parameters.
146*
147 info = 0
148 IF( m.LT.0 ) THEN
149 info = -1
150 ELSE IF( n.LT.0 ) THEN
151 info = -2
152 ELSE IF( lda.LT.max( 1, m ) ) THEN
153 info = -4
154 END IF
155 IF( info.NE.0 ) THEN
156 CALL xerbla( 'ZGETF2', -info )
157 RETURN
158 END IF
159*
160* Quick return if possible
161*
162 IF( m.EQ.0 .OR. n.EQ.0 )
163 \$ RETURN
164*
165* Compute machine safe minimum
166*
167 sfmin = dlamch('S')
168*
169 DO 10 j = 1, min( m, n )
170*
171* Find pivot and test for singularity.
172*
173 jp = j - 1 + izamax( m-j+1, a( j, j ), 1 )
174 ipiv( j ) = jp
175 IF( a( jp, j ).NE.zero ) THEN
176*
177* Apply the interchange to columns 1:N.
178*
179 IF( jp.NE.j )
180 \$ CALL zswap( n, a( j, 1 ), lda, a( jp, 1 ), lda )
181*
182* Compute elements J+1:M of J-th column.
183*
184 IF( j.LT.m ) THEN
185 IF( abs(a( j, j )) .GE. sfmin ) THEN
186 CALL zscal( m-j, one / a( j, j ), a( j+1, j ), 1 )
187 ELSE
188 DO 20 i = 1, m-j
189 a( j+i, j ) = a( j+i, j ) / a( j, j )
190 20 CONTINUE
191 END IF
192 END IF
193*
194 ELSE IF( info.EQ.0 ) THEN
195*
196 info = j
197 END IF
198*
199 IF( j.LT.min( m, n ) ) THEN
200*
201* Update trailing submatrix.
202*
203 CALL zgeru( m-j, n-j, -one, a( j+1, j ), 1, a( j, j+1 ),
204 \$ lda, a( j+1, j+1 ), lda )
205 END IF
206 10 CONTINUE
207 RETURN
208*
209* End of ZGETF2
210*
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
integer function izamax(N, ZX, INCX)
IZAMAX
Definition: izamax.f:71
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine zswap(N, ZX, INCX, ZY, INCY)
ZSWAP
Definition: zswap.f:81
subroutine zscal(N, ZA, ZX, INCX)
ZSCAL
Definition: zscal.f:78
subroutine zgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
ZGERU
Definition: zgeru.f:130
Here is the call graph for this function:
Here is the caller graph for this function: