LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ zgelqf()

subroutine zgelqf ( integer  M,
integer  N,
complex*16, dimension( lda, * )  A,
integer  LDA,
complex*16, dimension( * )  TAU,
complex*16, dimension( * )  WORK,
integer  LWORK,
integer  INFO 
)

ZGELQF

Download ZGELQF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 ZGELQF computes an LQ factorization of a complex M-by-N matrix A:

    A = ( L 0 ) *  Q

 where:

    Q is a N-by-N orthogonal matrix;
    L is a lower-triangular M-by-M matrix;
    0 is a M-by-(N-M) zero matrix, if M < N.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in,out]A
          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal of the array
          contain the m-by-min(m,n) lower trapezoidal matrix L (L is
          lower triangular if m <= n); the elements above the diagonal,
          with the array TAU, represent the unitary matrix Q as a
          product of elementary reflectors (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]TAU
          TAU is COMPLEX*16 array, dimension (min(M,N))
          The scalar factors of the elementary reflectors (see Further
          Details).
[out]WORK
          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= max(1,M).
          For optimum performance LWORK >= M*NB, where NB is the
          optimal blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix Q is represented as a product of elementary reflectors

     Q = H(k)**H . . . H(2)**H H(1)**H, where k = min(m,n).

  Each H(i) has the form

     H(i) = I - tau * v * v**H

  where tau is a complex scalar, and v is a complex vector with
  v(1:i-1) = 0 and v(i) = 1; conjg(v(i+1:n)) is stored on exit in
  A(i,i+1:n), and tau in TAU(i).

Definition at line 142 of file zgelqf.f.

143 *
144 * -- LAPACK computational routine --
145 * -- LAPACK is a software package provided by Univ. of Tennessee, --
146 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
147 *
148 * .. Scalar Arguments ..
149  INTEGER INFO, LDA, LWORK, M, N
150 * ..
151 * .. Array Arguments ..
152  COMPLEX*16 A( LDA, * ), TAU( * ), WORK( * )
153 * ..
154 *
155 * =====================================================================
156 *
157 * .. Local Scalars ..
158  LOGICAL LQUERY
159  INTEGER I, IB, IINFO, IWS, K, LDWORK, LWKOPT, NB,
160  $ NBMIN, NX
161 * ..
162 * .. External Subroutines ..
163  EXTERNAL xerbla, zgelq2, zlarfb, zlarft
164 * ..
165 * .. Intrinsic Functions ..
166  INTRINSIC max, min
167 * ..
168 * .. External Functions ..
169  INTEGER ILAENV
170  EXTERNAL ilaenv
171 * ..
172 * .. Executable Statements ..
173 *
174 * Test the input arguments
175 *
176  info = 0
177  nb = ilaenv( 1, 'ZGELQF', ' ', m, n, -1, -1 )
178  lwkopt = m*nb
179  work( 1 ) = lwkopt
180  lquery = ( lwork.EQ.-1 )
181  IF( m.LT.0 ) THEN
182  info = -1
183  ELSE IF( n.LT.0 ) THEN
184  info = -2
185  ELSE IF( lda.LT.max( 1, m ) ) THEN
186  info = -4
187  ELSE IF( lwork.LT.max( 1, m ) .AND. .NOT.lquery ) THEN
188  info = -7
189  END IF
190  IF( info.NE.0 ) THEN
191  CALL xerbla( 'ZGELQF', -info )
192  RETURN
193  ELSE IF( lquery ) THEN
194  RETURN
195  END IF
196 *
197 * Quick return if possible
198 *
199  k = min( m, n )
200  IF( k.EQ.0 ) THEN
201  work( 1 ) = 1
202  RETURN
203  END IF
204 *
205  nbmin = 2
206  nx = 0
207  iws = m
208  IF( nb.GT.1 .AND. nb.LT.k ) THEN
209 *
210 * Determine when to cross over from blocked to unblocked code.
211 *
212  nx = max( 0, ilaenv( 3, 'ZGELQF', ' ', m, n, -1, -1 ) )
213  IF( nx.LT.k ) THEN
214 *
215 * Determine if workspace is large enough for blocked code.
216 *
217  ldwork = m
218  iws = ldwork*nb
219  IF( lwork.LT.iws ) THEN
220 *
221 * Not enough workspace to use optimal NB: reduce NB and
222 * determine the minimum value of NB.
223 *
224  nb = lwork / ldwork
225  nbmin = max( 2, ilaenv( 2, 'ZGELQF', ' ', m, n, -1,
226  $ -1 ) )
227  END IF
228  END IF
229  END IF
230 *
231  IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
232 *
233 * Use blocked code initially
234 *
235  DO 10 i = 1, k - nx, nb
236  ib = min( k-i+1, nb )
237 *
238 * Compute the LQ factorization of the current block
239 * A(i:i+ib-1,i:n)
240 *
241  CALL zgelq2( ib, n-i+1, a( i, i ), lda, tau( i ), work,
242  $ iinfo )
243  IF( i+ib.LE.m ) THEN
244 *
245 * Form the triangular factor of the block reflector
246 * H = H(i) H(i+1) . . . H(i+ib-1)
247 *
248  CALL zlarft( 'Forward', 'Rowwise', n-i+1, ib, a( i, i ),
249  $ lda, tau( i ), work, ldwork )
250 *
251 * Apply H to A(i+ib:m,i:n) from the right
252 *
253  CALL zlarfb( 'Right', 'No transpose', 'Forward',
254  $ 'Rowwise', m-i-ib+1, n-i+1, ib, a( i, i ),
255  $ lda, work, ldwork, a( i+ib, i ), lda,
256  $ work( ib+1 ), ldwork )
257  END IF
258  10 CONTINUE
259  ELSE
260  i = 1
261  END IF
262 *
263 * Use unblocked code to factor the last or only block.
264 *
265  IF( i.LE.k )
266  $ CALL zgelq2( m-i+1, n-i+1, a( i, i ), lda, tau( i ), work,
267  $ iinfo )
268 *
269  work( 1 ) = iws
270  RETURN
271 *
272 * End of ZGELQF
273 *
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
ILAENV
Definition: ilaenv.f:162
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine zgelq2(M, N, A, LDA, TAU, WORK, INFO)
ZGELQ2 computes the LQ factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgelq2.f:129
subroutine zlarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition: zlarfb.f:197
subroutine zlarft(DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT)
ZLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition: zlarft.f:163
Here is the call graph for this function:
Here is the caller graph for this function: