LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ zdrot()

subroutine zdrot ( integer  N,
complex*16, dimension( * )  ZX,
integer  INCX,
complex*16, dimension( * )  ZY,
integer  INCY,
double precision  C,
double precision  S 
)

ZDROT

Purpose:
 Applies a plane rotation, where the cos and sin (c and s) are real
 and the vectors cx and cy are complex.
 jack dongarra, linpack, 3/11/78.
Parameters
[in]N
          N is INTEGER
           On entry, N specifies the order of the vectors cx and cy.
           N must be at least zero.
[in,out]ZX
          ZX is COMPLEX*16 array, dimension at least
           ( 1 + ( N - 1 )*abs( INCX ) ).
           Before entry, the incremented array ZX must contain the n
           element vector cx. On exit, ZX is overwritten by the updated
           vector cx.
[in]INCX
          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           ZX. INCX must not be zero.
[in,out]ZY
          ZY is COMPLEX*16 array, dimension at least
           ( 1 + ( N - 1 )*abs( INCY ) ).
           Before entry, the incremented array ZY must contain the n
           element vector cy. On exit, ZY is overwritten by the updated
           vector cy.
[in]INCY
          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           ZY. INCY must not be zero.
[in]C
          C is DOUBLE PRECISION
           On entry, C specifies the cosine, cos.
[in]S
          S is DOUBLE PRECISION
           On entry, S specifies the sine, sin.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 97 of file zdrot.f.

98 *
99 * -- Reference BLAS level1 routine --
100 * -- Reference BLAS is a software package provided by Univ. of Tennessee, --
101 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
102 *
103 * .. Scalar Arguments ..
104  INTEGER INCX, INCY, N
105  DOUBLE PRECISION C, S
106 * ..
107 * .. Array Arguments ..
108  COMPLEX*16 ZX( * ), ZY( * )
109 * ..
110 *
111 * =====================================================================
112 *
113 * .. Local Scalars ..
114  INTEGER I, IX, IY
115  COMPLEX*16 CTEMP
116 * ..
117 * .. Executable Statements ..
118 *
119  IF( n.LE.0 )
120  $ RETURN
121  IF( incx.EQ.1 .AND. incy.EQ.1 ) THEN
122 *
123 * code for both increments equal to 1
124 *
125  DO i = 1, n
126  ctemp = c*zx( i ) + s*zy( i )
127  zy( i ) = c*zy( i ) - s*zx( i )
128  zx( i ) = ctemp
129  END DO
130  ELSE
131 *
132 * code for unequal increments or equal increments not equal
133 * to 1
134 *
135  ix = 1
136  iy = 1
137  IF( incx.LT.0 )
138  $ ix = ( -n+1 )*incx + 1
139  IF( incy.LT.0 )
140  $ iy = ( -n+1 )*incy + 1
141  DO i = 1, n
142  ctemp = c*zx( ix ) + s*zy( iy )
143  zy( iy ) = c*zy( iy ) - s*zx( ix )
144  zx( ix ) = ctemp
145  ix = ix + incx
146  iy = iy + incy
147  END DO
148  END IF
149  RETURN
150 *
151 * End of ZDROT
152 *
Here is the caller graph for this function: