LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
claic1.f
Go to the documentation of this file.
1*> \brief \b CLAIC1 applies one step of incremental condition estimation.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLAIC1 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claic1.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claic1.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claic1.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CLAIC1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
20*
21* .. Scalar Arguments ..
22* INTEGER J, JOB
23* REAL SEST, SESTPR
24* COMPLEX C, GAMMA, S
25* ..
26* .. Array Arguments ..
27* COMPLEX W( J ), X( J )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CLAIC1 applies one step of incremental condition estimation in
37*> its simplest version:
38*>
39*> Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
40*> lower triangular matrix L, such that
41*> twonorm(L*x) = sest
42*> Then CLAIC1 computes sestpr, s, c such that
43*> the vector
44*> [ s*x ]
45*> xhat = [ c ]
46*> is an approximate singular vector of
47*> [ L 0 ]
48*> Lhat = [ w**H gamma ]
49*> in the sense that
50*> twonorm(Lhat*xhat) = sestpr.
51*>
52*> Depending on JOB, an estimate for the largest or smallest singular
53*> value is computed.
54*>
55*> Note that [s c]**H and sestpr**2 is an eigenpair of the system
56*>
57*> diag(sest*sest, 0) + [alpha gamma] * [ conjg(alpha) ]
58*> [ conjg(gamma) ]
59*>
60*> where alpha = x**H*w.
61*> \endverbatim
62*
63* Arguments:
64* ==========
65*
66*> \param[in] JOB
67*> \verbatim
68*> JOB is INTEGER
69*> = 1: an estimate for the largest singular value is computed.
70*> = 2: an estimate for the smallest singular value is computed.
71*> \endverbatim
72*>
73*> \param[in] J
74*> \verbatim
75*> J is INTEGER
76*> Length of X and W
77*> \endverbatim
78*>
79*> \param[in] X
80*> \verbatim
81*> X is COMPLEX array, dimension (J)
82*> The j-vector x.
83*> \endverbatim
84*>
85*> \param[in] SEST
86*> \verbatim
87*> SEST is REAL
88*> Estimated singular value of j by j matrix L
89*> \endverbatim
90*>
91*> \param[in] W
92*> \verbatim
93*> W is COMPLEX array, dimension (J)
94*> The j-vector w.
95*> \endverbatim
96*>
97*> \param[in] GAMMA
98*> \verbatim
99*> GAMMA is COMPLEX
100*> The diagonal element gamma.
101*> \endverbatim
102*>
103*> \param[out] SESTPR
104*> \verbatim
105*> SESTPR is REAL
106*> Estimated singular value of (j+1) by (j+1) matrix Lhat.
107*> \endverbatim
108*>
109*> \param[out] S
110*> \verbatim
111*> S is COMPLEX
112*> Sine needed in forming xhat.
113*> \endverbatim
114*>
115*> \param[out] C
116*> \verbatim
117*> C is COMPLEX
118*> Cosine needed in forming xhat.
119*> \endverbatim
120*
121* Authors:
122* ========
123*
124*> \author Univ. of Tennessee
125*> \author Univ. of California Berkeley
126*> \author Univ. of Colorado Denver
127*> \author NAG Ltd.
128*
129*> \ingroup laic1
130*
131* =====================================================================
132 SUBROUTINE claic1( JOB, J, X, SEST, W, GAMMA, SESTPR, S, C )
133*
134* -- LAPACK auxiliary routine --
135* -- LAPACK is a software package provided by Univ. of Tennessee, --
136* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
137*
138* .. Scalar Arguments ..
139 INTEGER J, JOB
140 REAL SEST, SESTPR
141 COMPLEX C, GAMMA, S
142* ..
143* .. Array Arguments ..
144 COMPLEX W( J ), X( J )
145* ..
146*
147* =====================================================================
148*
149* .. Parameters ..
150 REAL ZERO, ONE, TWO
151 parameter( zero = 0.0e0, one = 1.0e0, two = 2.0e0 )
152 REAL HALF, FOUR
153 parameter( half = 0.5e0, four = 4.0e0 )
154* ..
155* .. Local Scalars ..
156 REAL ABSALP, ABSEST, ABSGAM, B, EPS, NORMA, S1, S2,
157 $ SCL, T, TEST, TMP, ZETA1, ZETA2
158 COMPLEX ALPHA, COSINE, SINE
159* ..
160* .. Intrinsic Functions ..
161 INTRINSIC abs, conjg, max, sqrt
162* ..
163* .. External Functions ..
164 REAL SLAMCH
165 COMPLEX CDOTC
166 EXTERNAL slamch, cdotc
167* ..
168* .. Executable Statements ..
169*
170 eps = slamch( 'Epsilon' )
171 alpha = cdotc( j, x, 1, w, 1 )
172*
173 absalp = abs( alpha )
174 absgam = abs( gamma )
175 absest = abs( sest )
176*
177 IF( job.EQ.1 ) THEN
178*
179* Estimating largest singular value
180*
181* special cases
182*
183 IF( sest.EQ.zero ) THEN
184 s1 = max( absgam, absalp )
185 IF( s1.EQ.zero ) THEN
186 s = zero
187 c = one
188 sestpr = zero
189 ELSE
190 s = alpha / s1
191 c = gamma / s1
192 tmp = real( sqrt( s*conjg( s )+c*conjg( c ) ) )
193 s = s / tmp
194 c = c / tmp
195 sestpr = s1*tmp
196 END IF
197 RETURN
198 ELSE IF( absgam.LE.eps*absest ) THEN
199 s = one
200 c = zero
201 tmp = max( absest, absalp )
202 s1 = absest / tmp
203 s2 = absalp / tmp
204 sestpr = tmp*sqrt( s1*s1+s2*s2 )
205 RETURN
206 ELSE IF( absalp.LE.eps*absest ) THEN
207 s1 = absgam
208 s2 = absest
209 IF( s1.LE.s2 ) THEN
210 s = one
211 c = zero
212 sestpr = s2
213 ELSE
214 s = zero
215 c = one
216 sestpr = s1
217 END IF
218 RETURN
219 ELSE IF( absest.LE.eps*absalp .OR. absest.LE.eps*absgam ) THEN
220 s1 = absgam
221 s2 = absalp
222 IF( s1.LE.s2 ) THEN
223 tmp = s1 / s2
224 scl = sqrt( one+tmp*tmp )
225 sestpr = s2*scl
226 s = ( alpha / s2 ) / scl
227 c = ( gamma / s2 ) / scl
228 ELSE
229 tmp = s2 / s1
230 scl = sqrt( one+tmp*tmp )
231 sestpr = s1*scl
232 s = ( alpha / s1 ) / scl
233 c = ( gamma / s1 ) / scl
234 END IF
235 RETURN
236 ELSE
237*
238* normal case
239*
240 zeta1 = absalp / absest
241 zeta2 = absgam / absest
242*
243 b = ( one-zeta1*zeta1-zeta2*zeta2 )*half
244 c = zeta1*zeta1
245 IF( b.GT.zero ) THEN
246 t = real( c / ( b+sqrt( b*b+c ) ) )
247 ELSE
248 t = real( sqrt( b*b+c ) - b )
249 END IF
250*
251 sine = -( alpha / absest ) / t
252 cosine = -( gamma / absest ) / ( one+t )
253 tmp = real( sqrt( sine * conjg( sine )
254 $ + cosine * conjg( cosine ) ) )
255 s = sine / tmp
256 c = cosine / tmp
257 sestpr = sqrt( t+one )*absest
258 RETURN
259 END IF
260*
261 ELSE IF( job.EQ.2 ) THEN
262*
263* Estimating smallest singular value
264*
265* special cases
266*
267 IF( sest.EQ.zero ) THEN
268 sestpr = zero
269 IF( max( absgam, absalp ).EQ.zero ) THEN
270 sine = one
271 cosine = zero
272 ELSE
273 sine = -conjg( gamma )
274 cosine = conjg( alpha )
275 END IF
276 s1 = max( abs( sine ), abs( cosine ) )
277 s = sine / s1
278 c = cosine / s1
279 tmp = real( sqrt( s*conjg( s )+c*conjg( c ) ) )
280 s = s / tmp
281 c = c / tmp
282 RETURN
283 ELSE IF( absgam.LE.eps*absest ) THEN
284 s = zero
285 c = one
286 sestpr = absgam
287 RETURN
288 ELSE IF( absalp.LE.eps*absest ) THEN
289 s1 = absgam
290 s2 = absest
291 IF( s1.LE.s2 ) THEN
292 s = zero
293 c = one
294 sestpr = s1
295 ELSE
296 s = one
297 c = zero
298 sestpr = s2
299 END IF
300 RETURN
301 ELSE IF( absest.LE.eps*absalp .OR. absest.LE.eps*absgam ) THEN
302 s1 = absgam
303 s2 = absalp
304 IF( s1.LE.s2 ) THEN
305 tmp = s1 / s2
306 scl = sqrt( one+tmp*tmp )
307 sestpr = absest*( tmp / scl )
308 s = -( conjg( gamma ) / s2 ) / scl
309 c = ( conjg( alpha ) / s2 ) / scl
310 ELSE
311 tmp = s2 / s1
312 scl = sqrt( one+tmp*tmp )
313 sestpr = absest / scl
314 s = -( conjg( gamma ) / s1 ) / scl
315 c = ( conjg( alpha ) / s1 ) / scl
316 END IF
317 RETURN
318 ELSE
319*
320* normal case
321*
322 zeta1 = absalp / absest
323 zeta2 = absgam / absest
324*
325 norma = max( one+zeta1*zeta1+zeta1*zeta2,
326 $ zeta1*zeta2+zeta2*zeta2 )
327*
328* See if root is closer to zero or to ONE
329*
330 test = one + two*( zeta1-zeta2 )*( zeta1+zeta2 )
331 IF( test.GE.zero ) THEN
332*
333* root is close to zero, compute directly
334*
335 b = ( zeta1*zeta1+zeta2*zeta2+one )*half
336 c = zeta2*zeta2
337 t = real( c / ( b+sqrt( abs( b*b-c ) ) ) )
338 sine = ( alpha / absest ) / ( one-t )
339 cosine = -( gamma / absest ) / t
340 sestpr = sqrt( t+four*eps*eps*norma )*absest
341 ELSE
342*
343* root is closer to ONE, shift by that amount
344*
345 b = ( zeta2*zeta2+zeta1*zeta1-one )*half
346 c = zeta1*zeta1
347 IF( b.GE.zero ) THEN
348 t = real( -c / ( b+sqrt( b*b+c ) ) )
349 ELSE
350 t = real( b - sqrt( b*b+c ) )
351 END IF
352 sine = -( alpha / absest ) / t
353 cosine = -( gamma / absest ) / ( one+t )
354 sestpr = sqrt( one+t+four*eps*eps*norma )*absest
355 END IF
356 tmp = real( sqrt( sine * conjg( sine )
357 $ + cosine * conjg( cosine ) ) )
358 s = sine / tmp
359 c = cosine / tmp
360 RETURN
361*
362 END IF
363 END IF
364 RETURN
365*
366* End of CLAIC1
367*
368 END
subroutine claic1(job, j, x, sest, w, gamma, sestpr, s, c)
CLAIC1 applies one step of incremental condition estimation.
Definition claic1.f:133