LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
dchklq.f
Go to the documentation of this file.
1 *> \brief \b DCHKLQ
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
12 * NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC,
13 * B, X, XACT, TAU, WORK, RWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER MVAL( * ), NBVAL( * ), NVAL( * ),
23 * $ NXVAL( * )
24 * DOUBLE PRECISION A( * ), AC( * ), AF( * ), AL( * ), AQ( * ),
25 * $ B( * ), RWORK( * ), TAU( * ), WORK( * ),
26 * $ X( * ), XACT( * )
27 * ..
28 *
29 *
30 *> \par Purpose:
31 * =============
32 *>
33 *> \verbatim
34 *>
35 *> DCHKLQ tests DGELQF, DORGLQ and DORMLQ.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NM
50 *> \verbatim
51 *> NM is INTEGER
52 *> The number of values of M contained in the vector MVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] MVAL
56 *> \verbatim
57 *> MVAL is INTEGER array, dimension (NM)
58 *> The values of the matrix row dimension M.
59 *> \endverbatim
60 *>
61 *> \param[in] NN
62 *> \verbatim
63 *> NN is INTEGER
64 *> The number of values of N contained in the vector NVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NVAL
68 *> \verbatim
69 *> NVAL is INTEGER array, dimension (NN)
70 *> The values of the matrix column dimension N.
71 *> \endverbatim
72 *>
73 *> \param[in] NNB
74 *> \verbatim
75 *> NNB is INTEGER
76 *> The number of values of NB and NX contained in the
77 *> vectors NBVAL and NXVAL. The blocking parameters are used
78 *> in pairs (NB,NX).
79 *> \endverbatim
80 *>
81 *> \param[in] NBVAL
82 *> \verbatim
83 *> NBVAL is INTEGER array, dimension (NNB)
84 *> The values of the blocksize NB.
85 *> \endverbatim
86 *>
87 *> \param[in] NXVAL
88 *> \verbatim
89 *> NXVAL is INTEGER array, dimension (NNB)
90 *> The values of the crossover point NX.
91 *> \endverbatim
92 *>
93 *> \param[in] NRHS
94 *> \verbatim
95 *> NRHS is INTEGER
96 *> The number of right hand side vectors to be generated for
97 *> each linear system.
98 *> \endverbatim
99 *>
100 *> \param[in] THRESH
101 *> \verbatim
102 *> THRESH is DOUBLE PRECISION
103 *> The threshold value for the test ratios. A result is
104 *> included in the output file if RESULT >= THRESH. To have
105 *> every test ratio printed, use THRESH = 0.
106 *> \endverbatim
107 *>
108 *> \param[in] TSTERR
109 *> \verbatim
110 *> TSTERR is LOGICAL
111 *> Flag that indicates whether error exits are to be tested.
112 *> \endverbatim
113 *>
114 *> \param[in] NMAX
115 *> \verbatim
116 *> NMAX is INTEGER
117 *> The maximum value permitted for M or N, used in dimensioning
118 *> the work arrays.
119 *> \endverbatim
120 *>
121 *> \param[out] A
122 *> \verbatim
123 *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
124 *> \endverbatim
125 *>
126 *> \param[out] AF
127 *> \verbatim
128 *> AF is DOUBLE PRECISION array, dimension (NMAX*NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] AQ
132 *> \verbatim
133 *> AQ is DOUBLE PRECISION array, dimension (NMAX*NMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] AL
137 *> \verbatim
138 *> AL is DOUBLE PRECISION array, dimension (NMAX*NMAX)
139 *> \endverbatim
140 *>
141 *> \param[out] AC
142 *> \verbatim
143 *> AC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
144 *> \endverbatim
145 *>
146 *> \param[out] B
147 *> \verbatim
148 *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
149 *> \endverbatim
150 *>
151 *> \param[out] X
152 *> \verbatim
153 *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
154 *> \endverbatim
155 *>
156 *> \param[out] XACT
157 *> \verbatim
158 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
159 *> \endverbatim
160 *>
161 *> \param[out] TAU
162 *> \verbatim
163 *> TAU is DOUBLE PRECISION array, dimension (NMAX)
164 *> \endverbatim
165 *>
166 *> \param[out] WORK
167 *> \verbatim
168 *> WORK is DOUBLE PRECISION array, dimension (NMAX*NMAX)
169 *> \endverbatim
170 *>
171 *> \param[out] RWORK
172 *> \verbatim
173 *> RWORK is DOUBLE PRECISION array, dimension (NMAX)
174 *> \endverbatim
175 *>
176 *> \param[in] NOUT
177 *> \verbatim
178 *> NOUT is INTEGER
179 *> The unit number for output.
180 *> \endverbatim
181 *
182 * Authors:
183 * ========
184 *
185 *> \author Univ. of Tennessee
186 *> \author Univ. of California Berkeley
187 *> \author Univ. of Colorado Denver
188 *> \author NAG Ltd.
189 *
190 *> \ingroup double_lin
191 *
192 * =====================================================================
193  SUBROUTINE dchklq( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
194  $ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC,
195  $ B, X, XACT, TAU, WORK, RWORK, NOUT )
196 *
197 * -- LAPACK test routine --
198 * -- LAPACK is a software package provided by Univ. of Tennessee, --
199 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
200 *
201 * .. Scalar Arguments ..
202  LOGICAL TSTERR
203  INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
204  DOUBLE PRECISION THRESH
205 * ..
206 * .. Array Arguments ..
207  LOGICAL DOTYPE( * )
208  INTEGER MVAL( * ), NBVAL( * ), NVAL( * ),
209  $ nxval( * )
210  DOUBLE PRECISION A( * ), AC( * ), AF( * ), AL( * ), AQ( * ),
211  $ B( * ), RWORK( * ), TAU( * ), WORK( * ),
212  $ x( * ), xact( * )
213 * ..
214 *
215 * =====================================================================
216 *
217 * .. Parameters ..
218  INTEGER NTESTS
219  PARAMETER ( NTESTS = 7 )
220  INTEGER NTYPES
221  parameter( ntypes = 8 )
222  DOUBLE PRECISION ZERO
223  parameter( zero = 0.0d0 )
224 * ..
225 * .. Local Scalars ..
226  CHARACTER DIST, TYPE
227  CHARACTER*3 PATH
228  INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
229  $ lwork, m, minmn, mode, n, nb, nerrs, nfail, nk,
230  $ nrun, nt, nx
231  DOUBLE PRECISION ANORM, CNDNUM
232 * ..
233 * .. Local Arrays ..
234  INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
235  DOUBLE PRECISION RESULT( NTESTS )
236 * ..
237 * .. External Subroutines ..
238  EXTERNAL alaerh, alahd, alasum, derrlq, dgelqs, dget02,
240  $ dlqt03, xlaenv
241 * ..
242 * .. Intrinsic Functions ..
243  INTRINSIC max, min
244 * ..
245 * .. Scalars in Common ..
246  LOGICAL LERR, OK
247  CHARACTER*32 SRNAMT
248  INTEGER INFOT, NUNIT
249 * ..
250 * .. Common blocks ..
251  COMMON / infoc / infot, nunit, ok, lerr
252  COMMON / srnamc / srnamt
253 * ..
254 * .. Data statements ..
255  DATA iseedy / 1988, 1989, 1990, 1991 /
256 * ..
257 * .. Executable Statements ..
258 *
259 * Initialize constants and the random number seed.
260 *
261  path( 1: 1 ) = 'Double precision'
262  path( 2: 3 ) = 'LQ'
263  nrun = 0
264  nfail = 0
265  nerrs = 0
266  DO 10 i = 1, 4
267  iseed( i ) = iseedy( i )
268  10 CONTINUE
269 *
270 * Test the error exits
271 *
272  IF( tsterr )
273  $ CALL derrlq( path, nout )
274  infot = 0
275  CALL xlaenv( 2, 2 )
276 *
277  lda = nmax
278  lwork = nmax*max( nmax, nrhs )
279 *
280 * Do for each value of M in MVAL.
281 *
282  DO 70 im = 1, nm
283  m = mval( im )
284 *
285 * Do for each value of N in NVAL.
286 *
287  DO 60 in = 1, nn
288  n = nval( in )
289  minmn = min( m, n )
290  DO 50 imat = 1, ntypes
291 *
292 * Do the tests only if DOTYPE( IMAT ) is true.
293 *
294  IF( .NOT.dotype( imat ) )
295  $ GO TO 50
296 *
297 * Set up parameters with DLATB4 and generate a test matrix
298 * with DLATMS.
299 *
300  CALL dlatb4( path, imat, m, n, TYPE, kl, ku, anorm, mode,
301  $ cndnum, dist )
302 *
303  srnamt = 'DLATMS'
304  CALL dlatms( m, n, dist, iseed, TYPE, rwork, mode,
305  $ cndnum, anorm, kl, ku, 'No packing', a, lda,
306  $ work, info )
307 *
308 * Check error code from DLATMS.
309 *
310  IF( info.NE.0 ) THEN
311  CALL alaerh( path, 'DLATMS', info, 0, ' ', m, n, -1,
312  $ -1, -1, imat, nfail, nerrs, nout )
313  GO TO 50
314  END IF
315 *
316 * Set some values for K: the first value must be MINMN,
317 * corresponding to the call of DLQT01; other values are
318 * used in the calls of DLQT02, and must not exceed MINMN.
319 *
320  kval( 1 ) = minmn
321  kval( 2 ) = 0
322  kval( 3 ) = 1
323  kval( 4 ) = minmn / 2
324  IF( minmn.EQ.0 ) THEN
325  nk = 1
326  ELSE IF( minmn.EQ.1 ) THEN
327  nk = 2
328  ELSE IF( minmn.LE.3 ) THEN
329  nk = 3
330  ELSE
331  nk = 4
332  END IF
333 *
334 * Do for each value of K in KVAL
335 *
336  DO 40 ik = 1, nk
337  k = kval( ik )
338 *
339 * Do for each pair of values (NB,NX) in NBVAL and NXVAL.
340 *
341  DO 30 inb = 1, nnb
342  nb = nbval( inb )
343  CALL xlaenv( 1, nb )
344  nx = nxval( inb )
345  CALL xlaenv( 3, nx )
346  DO i = 1, ntests
347  result( i ) = zero
348  END DO
349  nt = 2
350  IF( ik.EQ.1 ) THEN
351 *
352 * Test DGELQF
353 *
354  CALL dlqt01( m, n, a, af, aq, al, lda, tau,
355  $ work, lwork, rwork, result( 1 ) )
356  ELSE IF( m.LE.n ) THEN
357 *
358 * Test DORGLQ, using factorization
359 * returned by DLQT01
360 *
361  CALL dlqt02( m, n, k, a, af, aq, al, lda, tau,
362  $ work, lwork, rwork, result( 1 ) )
363  ELSE
364  result( 1 ) = zero
365  result( 2 ) = zero
366  END IF
367  IF( m.GE.k ) THEN
368 *
369 * Test DORMLQ, using factorization returned
370 * by DLQT01
371 *
372  CALL dlqt03( m, n, k, af, ac, al, aq, lda, tau,
373  $ work, lwork, rwork, result( 3 ) )
374  nt = nt + 4
375 *
376 * If M>=N and K=N, call DGELQS to solve a system
377 * with NRHS right hand sides and compute the
378 * residual.
379 *
380  IF( k.EQ.m .AND. inb.EQ.1 ) THEN
381 *
382 * Generate a solution and set the right
383 * hand side.
384 *
385  srnamt = 'DLARHS'
386  CALL dlarhs( path, 'New', 'Full',
387  $ 'No transpose', m, n, 0, 0,
388  $ nrhs, a, lda, xact, lda, b, lda,
389  $ iseed, info )
390 *
391  CALL dlacpy( 'Full', m, nrhs, b, lda, x,
392  $ lda )
393  srnamt = 'DGELQS'
394  CALL dgelqs( m, n, nrhs, af, lda, tau, x,
395  $ lda, work, lwork, info )
396 *
397 * Check error code from DGELQS.
398 *
399  IF( info.NE.0 )
400  $ CALL alaerh( path, 'DGELQS', info, 0, ' ',
401  $ m, n, nrhs, -1, nb, imat,
402  $ nfail, nerrs, nout )
403 *
404  CALL dget02( 'No transpose', m, n, nrhs, a,
405  $ lda, x, lda, b, lda, rwork,
406  $ result( 7 ) )
407  nt = nt + 1
408  ELSE
409  result( 7 ) = zero
410  END IF
411  ELSE
412  result( 3 ) = zero
413  result( 4 ) = zero
414  result( 5 ) = zero
415  result( 6 ) = zero
416  END IF
417 *
418 * Print information about the tests that did not
419 * pass the threshold.
420 *
421  DO 20 i = 1, nt
422  IF( result( i ).GE.thresh ) THEN
423  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
424  $ CALL alahd( nout, path )
425  WRITE( nout, fmt = 9999 )m, n, k, nb, nx,
426  $ imat, i, result( i )
427  nfail = nfail + 1
428  END IF
429  20 CONTINUE
430  nrun = nrun + nt
431  30 CONTINUE
432  40 CONTINUE
433  50 CONTINUE
434  60 CONTINUE
435  70 CONTINUE
436 *
437 * Print a summary of the results.
438 *
439  CALL alasum( path, nout, nfail, nrun, nerrs )
440 *
441  9999 FORMAT( ' M=', i5, ', N=', i5, ', K=', i5, ', NB=', i4, ', NX=',
442  $ i5, ', type ', i2, ', test(', i2, ')=', g12.5 )
443  RETURN
444 *
445 * End of DCHKLQ
446 *
447  END
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:205
subroutine dget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DGET02
Definition: dget02.f:135
subroutine dlqt01(M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DLQT01
Definition: dlqt01.f:126
subroutine derrlq(PATH, NUNIT)
DERRLQ
Definition: derrlq.f:55
subroutine dchklq(DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL, NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, B, X, XACT, TAU, WORK, RWORK, NOUT)
DCHKLQ
Definition: dchklq.f:196
subroutine dlqt03(M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DLQT03
Definition: dlqt03.f:136
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:120
subroutine dlqt02(M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK, RWORK, RESULT)
DLQT02
Definition: dlqt02.f:135
subroutine dgelqs(M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK, INFO)
DGELQS
Definition: dgelqs.f:121
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321