LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgeql2()

subroutine dgeql2 ( integer m,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
integer info )

DGEQL2 computes the QL factorization of a general rectangular matrix using an unblocked algorithm.

Download DGEQL2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGEQL2 computes a QL factorization of a real m by n matrix A:
!> A = Q * L.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the m by n matrix A.
!>          On exit, if m >= n, the lower triangle of the subarray
!>          A(m-n+1:m,1:n) contains the n by n lower triangular matrix L;
!>          if m <= n, the elements on and below the (n-m)-th
!>          superdiagonal contain the m by n lower trapezoidal matrix L;
!>          the remaining elements, with the array TAU, represent the
!>          orthogonal matrix Q as a product of elementary reflectors
!>          (see Further Details).
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0: successful exit
!>          < 0: if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of elementary reflectors
!>
!>     Q = H(k) . . . H(2) H(1), where k = min(m,n).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(m-k+i+1:m) = 0 and v(m-k+i) = 1; v(1:m-k+i-1) is stored on exit in
!>  A(1:m-k+i-1,n-k+i), and tau in TAU(i).
!> 

Definition at line 120 of file dgeql2.f.

121*
122* -- LAPACK computational routine --
123* -- LAPACK is a software package provided by Univ. of Tennessee, --
124* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
125*
126* .. Scalar Arguments ..
127 INTEGER INFO, LDA, M, N
128* ..
129* .. Array Arguments ..
130 DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * )
131* ..
132*
133* =====================================================================
134*
135* .. Parameters ..
136 DOUBLE PRECISION ONE
137 parameter( one = 1.0d+0 )
138* ..
139* .. Local Scalars ..
140 INTEGER I, K
141* ..
142* .. External Subroutines ..
143 EXTERNAL dlarf1l, dlarfg, xerbla
144* ..
145* .. Intrinsic Functions ..
146 INTRINSIC max, min
147* ..
148* .. Executable Statements ..
149*
150* Test the input arguments
151*
152 info = 0
153 IF( m.LT.0 ) THEN
154 info = -1
155 ELSE IF( n.LT.0 ) THEN
156 info = -2
157 ELSE IF( lda.LT.max( 1, m ) ) THEN
158 info = -4
159 END IF
160 IF( info.NE.0 ) THEN
161 CALL xerbla( 'DGEQL2', -info )
162 RETURN
163 END IF
164*
165 k = min( m, n )
166*
167 DO 10 i = k, 1, -1
168*
169* Generate elementary reflector H(i) to annihilate
170* A(1:m-k+i-1,n-k+i)
171*
172 CALL dlarfg( m-k+i, a( m-k+i, n-k+i ), a( 1, n-k+i ), 1,
173 $ tau( i ) )
174*
175* Apply H(i) to A(1:m-k+i,1:n-k+i-1) from the left
176*
177 CALL dlarf1l( 'Left', m-k+i, n-k+i-1, a( 1, n-k+i ), 1,
178 $ tau( i ),
179 $ a, lda, work )
180 10 CONTINUE
181 RETURN
182*
183* End of DGEQL2
184*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dlarf1l(side, m, n, v, incv, tau, c, ldc, work)
DLARF1L applies an elementary reflector to a general rectangular
Definition dlarf1l.f:124
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104
Here is the call graph for this function:
Here is the caller graph for this function: