LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ stzrqf()

subroutine stzrqf ( integer  M,
integer  N,
real, dimension( lda, * )  A,
integer  LDA,
real, dimension( * )  TAU,
integer  INFO 
)

STZRQF

Download STZRQF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 This routine is deprecated and has been replaced by routine STZRZF.

 STZRQF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A
 to upper triangular form by means of orthogonal transformations.

 The upper trapezoidal matrix A is factored as

    A = ( R  0 ) * Z,

 where Z is an N-by-N orthogonal matrix and R is an M-by-M upper
 triangular matrix.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the leading M-by-N upper trapezoidal part of the
          array A must contain the matrix to be factorized.
          On exit, the leading M-by-M upper triangular part of A
          contains the upper triangular matrix R, and elements M+1 to
          N of the first M rows of A, with the array TAU, represent the
          orthogonal matrix Z as a product of M elementary reflectors.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]TAU
          TAU is REAL array, dimension (M)
          The scalar factors of the elementary reflectors.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The factorization is obtained by Householder's method.  The kth
  transformation matrix, Z( k ), which is used to introduce zeros into
  the ( m - k + 1 )th row of A, is given in the form

     Z( k ) = ( I     0   ),
              ( 0  T( k ) )

  where

     T( k ) = I - tau*u( k )*u( k )**T,   u( k ) = (   1    ),
                                                   (   0    )
                                                   ( z( k ) )

  tau is a scalar and z( k ) is an ( n - m ) element vector.
  tau and z( k ) are chosen to annihilate the elements of the kth row
  of X.

  The scalar tau is returned in the kth element of TAU and the vector
  u( k ) in the kth row of A, such that the elements of z( k ) are
  in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
  the upper triangular part of A.

  Z is given by

     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).

Definition at line 137 of file stzrqf.f.

138 *
139 * -- LAPACK computational routine --
140 * -- LAPACK is a software package provided by Univ. of Tennessee, --
141 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
142 *
143 * .. Scalar Arguments ..
144  INTEGER INFO, LDA, M, N
145 * ..
146 * .. Array Arguments ..
147  REAL A( LDA, * ), TAU( * )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  REAL ONE, ZERO
154  parameter( one = 1.0e+0, zero = 0.0e+0 )
155 * ..
156 * .. Local Scalars ..
157  INTEGER I, K, M1
158 * ..
159 * .. Intrinsic Functions ..
160  INTRINSIC max, min
161 * ..
162 * .. External Subroutines ..
163  EXTERNAL saxpy, scopy, sgemv, sger, slarfg, xerbla
164 * ..
165 * .. Executable Statements ..
166 *
167 * Test the input parameters.
168 *
169  info = 0
170  IF( m.LT.0 ) THEN
171  info = -1
172  ELSE IF( n.LT.m ) THEN
173  info = -2
174  ELSE IF( lda.LT.max( 1, m ) ) THEN
175  info = -4
176  END IF
177  IF( info.NE.0 ) THEN
178  CALL xerbla( 'STZRQF', -info )
179  RETURN
180  END IF
181 *
182 * Perform the factorization.
183 *
184  IF( m.EQ.0 )
185  $ RETURN
186  IF( m.EQ.n ) THEN
187  DO 10 i = 1, n
188  tau( i ) = zero
189  10 CONTINUE
190  ELSE
191  m1 = min( m+1, n )
192  DO 20 k = m, 1, -1
193 *
194 * Use a Householder reflection to zero the kth row of A.
195 * First set up the reflection.
196 *
197  CALL slarfg( n-m+1, a( k, k ), a( k, m1 ), lda, tau( k ) )
198 *
199  IF( ( tau( k ).NE.zero ) .AND. ( k.GT.1 ) ) THEN
200 *
201 * We now perform the operation A := A*P( k ).
202 *
203 * Use the first ( k - 1 ) elements of TAU to store a( k ),
204 * where a( k ) consists of the first ( k - 1 ) elements of
205 * the kth column of A. Also let B denote the first
206 * ( k - 1 ) rows of the last ( n - m ) columns of A.
207 *
208  CALL scopy( k-1, a( 1, k ), 1, tau, 1 )
209 *
210 * Form w = a( k ) + B*z( k ) in TAU.
211 *
212  CALL sgemv( 'No transpose', k-1, n-m, one, a( 1, m1 ),
213  $ lda, a( k, m1 ), lda, one, tau, 1 )
214 *
215 * Now form a( k ) := a( k ) - tau*w
216 * and B := B - tau*w*z( k )**T.
217 *
218  CALL saxpy( k-1, -tau( k ), tau, 1, a( 1, k ), 1 )
219  CALL sger( k-1, n-m, -tau( k ), tau, 1, a( k, m1 ), lda,
220  $ a( 1, m1 ), lda )
221  END IF
222  20 CONTINUE
223  END IF
224 *
225  RETURN
226 *
227 * End of STZRQF
228 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine slarfg(N, ALPHA, X, INCX, TAU)
SLARFG generates an elementary reflector (Householder matrix).
Definition: slarfg.f:106
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:82
subroutine saxpy(N, SA, SX, INCX, SY, INCY)
SAXPY
Definition: saxpy.f:89
subroutine sger(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
SGER
Definition: sger.f:130
subroutine sgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
SGEMV
Definition: sgemv.f:156
Here is the call graph for this function:
Here is the caller graph for this function: