LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ slarfx()

subroutine slarfx ( character  SIDE,
integer  M,
integer  N,
real, dimension( * )  V,
real  TAU,
real, dimension( ldc, * )  C,
integer  LDC,
real, dimension( * )  WORK 
)

SLARFX applies an elementary reflector to a general rectangular matrix, with loop unrolling when the reflector has order ≤ 10.

Download SLARFX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 SLARFX applies a real elementary reflector H to a real m by n
 matrix C, from either the left or the right. H is represented in the
 form

       H = I - tau * v * v**T

 where tau is a real scalar and v is a real vector.

 If tau = 0, then H is taken to be the unit matrix

 This version uses inline code if H has order < 11.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': form  H * C
          = 'R': form  C * H
[in]M
          M is INTEGER
          The number of rows of the matrix C.
[in]N
          N is INTEGER
          The number of columns of the matrix C.
[in]V
          V is REAL array, dimension (M) if SIDE = 'L'
                                     or (N) if SIDE = 'R'
          The vector v in the representation of H.
[in]TAU
          TAU is REAL
          The value tau in the representation of H.
[in,out]C
          C is REAL array, dimension (LDC,N)
          On entry, the m by n matrix C.
          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
          or C * H if SIDE = 'R'.
[in]LDC
          LDC is INTEGER
          The leading dimension of the array C. LDC >= (1,M).
[out]WORK
          WORK is REAL array, dimension
                      (N) if SIDE = 'L'
                      or (M) if SIDE = 'R'
          WORK is not referenced if H has order < 11.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 119 of file slarfx.f.

120 *
121 * -- LAPACK auxiliary routine --
122 * -- LAPACK is a software package provided by Univ. of Tennessee, --
123 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
124 *
125 * .. Scalar Arguments ..
126  CHARACTER SIDE
127  INTEGER LDC, M, N
128  REAL TAU
129 * ..
130 * .. Array Arguments ..
131  REAL C( LDC, * ), V( * ), WORK( * )
132 * ..
133 *
134 * =====================================================================
135 *
136 * .. Parameters ..
137  REAL ZERO, ONE
138  parameter( zero = 0.0e+0, one = 1.0e+0 )
139 * ..
140 * .. Local Scalars ..
141  INTEGER J
142  REAL SUM, T1, T10, T2, T3, T4, T5, T6, T7, T8, T9,
143  $ V1, V10, V2, V3, V4, V5, V6, V7, V8, V9
144 * ..
145 * .. External Functions ..
146  LOGICAL LSAME
147  EXTERNAL lsame
148 * ..
149 * .. External Subroutines ..
150  EXTERNAL slarf
151 * ..
152 * .. Executable Statements ..
153 *
154  IF( tau.EQ.zero )
155  $ RETURN
156  IF( lsame( side, 'L' ) ) THEN
157 *
158 * Form H * C, where H has order m.
159 *
160  GO TO ( 10, 30, 50, 70, 90, 110, 130, 150,
161  $ 170, 190 )m
162 *
163 * Code for general M
164 *
165  CALL slarf( side, m, n, v, 1, tau, c, ldc, work )
166  GO TO 410
167  10 CONTINUE
168 *
169 * Special code for 1 x 1 Householder
170 *
171  t1 = one - tau*v( 1 )*v( 1 )
172  DO 20 j = 1, n
173  c( 1, j ) = t1*c( 1, j )
174  20 CONTINUE
175  GO TO 410
176  30 CONTINUE
177 *
178 * Special code for 2 x 2 Householder
179 *
180  v1 = v( 1 )
181  t1 = tau*v1
182  v2 = v( 2 )
183  t2 = tau*v2
184  DO 40 j = 1, n
185  sum = v1*c( 1, j ) + v2*c( 2, j )
186  c( 1, j ) = c( 1, j ) - sum*t1
187  c( 2, j ) = c( 2, j ) - sum*t2
188  40 CONTINUE
189  GO TO 410
190  50 CONTINUE
191 *
192 * Special code for 3 x 3 Householder
193 *
194  v1 = v( 1 )
195  t1 = tau*v1
196  v2 = v( 2 )
197  t2 = tau*v2
198  v3 = v( 3 )
199  t3 = tau*v3
200  DO 60 j = 1, n
201  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j )
202  c( 1, j ) = c( 1, j ) - sum*t1
203  c( 2, j ) = c( 2, j ) - sum*t2
204  c( 3, j ) = c( 3, j ) - sum*t3
205  60 CONTINUE
206  GO TO 410
207  70 CONTINUE
208 *
209 * Special code for 4 x 4 Householder
210 *
211  v1 = v( 1 )
212  t1 = tau*v1
213  v2 = v( 2 )
214  t2 = tau*v2
215  v3 = v( 3 )
216  t3 = tau*v3
217  v4 = v( 4 )
218  t4 = tau*v4
219  DO 80 j = 1, n
220  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
221  $ v4*c( 4, j )
222  c( 1, j ) = c( 1, j ) - sum*t1
223  c( 2, j ) = c( 2, j ) - sum*t2
224  c( 3, j ) = c( 3, j ) - sum*t3
225  c( 4, j ) = c( 4, j ) - sum*t4
226  80 CONTINUE
227  GO TO 410
228  90 CONTINUE
229 *
230 * Special code for 5 x 5 Householder
231 *
232  v1 = v( 1 )
233  t1 = tau*v1
234  v2 = v( 2 )
235  t2 = tau*v2
236  v3 = v( 3 )
237  t3 = tau*v3
238  v4 = v( 4 )
239  t4 = tau*v4
240  v5 = v( 5 )
241  t5 = tau*v5
242  DO 100 j = 1, n
243  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
244  $ v4*c( 4, j ) + v5*c( 5, j )
245  c( 1, j ) = c( 1, j ) - sum*t1
246  c( 2, j ) = c( 2, j ) - sum*t2
247  c( 3, j ) = c( 3, j ) - sum*t3
248  c( 4, j ) = c( 4, j ) - sum*t4
249  c( 5, j ) = c( 5, j ) - sum*t5
250  100 CONTINUE
251  GO TO 410
252  110 CONTINUE
253 *
254 * Special code for 6 x 6 Householder
255 *
256  v1 = v( 1 )
257  t1 = tau*v1
258  v2 = v( 2 )
259  t2 = tau*v2
260  v3 = v( 3 )
261  t3 = tau*v3
262  v4 = v( 4 )
263  t4 = tau*v4
264  v5 = v( 5 )
265  t5 = tau*v5
266  v6 = v( 6 )
267  t6 = tau*v6
268  DO 120 j = 1, n
269  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
270  $ v4*c( 4, j ) + v5*c( 5, j ) + v6*c( 6, j )
271  c( 1, j ) = c( 1, j ) - sum*t1
272  c( 2, j ) = c( 2, j ) - sum*t2
273  c( 3, j ) = c( 3, j ) - sum*t3
274  c( 4, j ) = c( 4, j ) - sum*t4
275  c( 5, j ) = c( 5, j ) - sum*t5
276  c( 6, j ) = c( 6, j ) - sum*t6
277  120 CONTINUE
278  GO TO 410
279  130 CONTINUE
280 *
281 * Special code for 7 x 7 Householder
282 *
283  v1 = v( 1 )
284  t1 = tau*v1
285  v2 = v( 2 )
286  t2 = tau*v2
287  v3 = v( 3 )
288  t3 = tau*v3
289  v4 = v( 4 )
290  t4 = tau*v4
291  v5 = v( 5 )
292  t5 = tau*v5
293  v6 = v( 6 )
294  t6 = tau*v6
295  v7 = v( 7 )
296  t7 = tau*v7
297  DO 140 j = 1, n
298  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
299  $ v4*c( 4, j ) + v5*c( 5, j ) + v6*c( 6, j ) +
300  $ v7*c( 7, j )
301  c( 1, j ) = c( 1, j ) - sum*t1
302  c( 2, j ) = c( 2, j ) - sum*t2
303  c( 3, j ) = c( 3, j ) - sum*t3
304  c( 4, j ) = c( 4, j ) - sum*t4
305  c( 5, j ) = c( 5, j ) - sum*t5
306  c( 6, j ) = c( 6, j ) - sum*t6
307  c( 7, j ) = c( 7, j ) - sum*t7
308  140 CONTINUE
309  GO TO 410
310  150 CONTINUE
311 *
312 * Special code for 8 x 8 Householder
313 *
314  v1 = v( 1 )
315  t1 = tau*v1
316  v2 = v( 2 )
317  t2 = tau*v2
318  v3 = v( 3 )
319  t3 = tau*v3
320  v4 = v( 4 )
321  t4 = tau*v4
322  v5 = v( 5 )
323  t5 = tau*v5
324  v6 = v( 6 )
325  t6 = tau*v6
326  v7 = v( 7 )
327  t7 = tau*v7
328  v8 = v( 8 )
329  t8 = tau*v8
330  DO 160 j = 1, n
331  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
332  $ v4*c( 4, j ) + v5*c( 5, j ) + v6*c( 6, j ) +
333  $ v7*c( 7, j ) + v8*c( 8, j )
334  c( 1, j ) = c( 1, j ) - sum*t1
335  c( 2, j ) = c( 2, j ) - sum*t2
336  c( 3, j ) = c( 3, j ) - sum*t3
337  c( 4, j ) = c( 4, j ) - sum*t4
338  c( 5, j ) = c( 5, j ) - sum*t5
339  c( 6, j ) = c( 6, j ) - sum*t6
340  c( 7, j ) = c( 7, j ) - sum*t7
341  c( 8, j ) = c( 8, j ) - sum*t8
342  160 CONTINUE
343  GO TO 410
344  170 CONTINUE
345 *
346 * Special code for 9 x 9 Householder
347 *
348  v1 = v( 1 )
349  t1 = tau*v1
350  v2 = v( 2 )
351  t2 = tau*v2
352  v3 = v( 3 )
353  t3 = tau*v3
354  v4 = v( 4 )
355  t4 = tau*v4
356  v5 = v( 5 )
357  t5 = tau*v5
358  v6 = v( 6 )
359  t6 = tau*v6
360  v7 = v( 7 )
361  t7 = tau*v7
362  v8 = v( 8 )
363  t8 = tau*v8
364  v9 = v( 9 )
365  t9 = tau*v9
366  DO 180 j = 1, n
367  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
368  $ v4*c( 4, j ) + v5*c( 5, j ) + v6*c( 6, j ) +
369  $ v7*c( 7, j ) + v8*c( 8, j ) + v9*c( 9, j )
370  c( 1, j ) = c( 1, j ) - sum*t1
371  c( 2, j ) = c( 2, j ) - sum*t2
372  c( 3, j ) = c( 3, j ) - sum*t3
373  c( 4, j ) = c( 4, j ) - sum*t4
374  c( 5, j ) = c( 5, j ) - sum*t5
375  c( 6, j ) = c( 6, j ) - sum*t6
376  c( 7, j ) = c( 7, j ) - sum*t7
377  c( 8, j ) = c( 8, j ) - sum*t8
378  c( 9, j ) = c( 9, j ) - sum*t9
379  180 CONTINUE
380  GO TO 410
381  190 CONTINUE
382 *
383 * Special code for 10 x 10 Householder
384 *
385  v1 = v( 1 )
386  t1 = tau*v1
387  v2 = v( 2 )
388  t2 = tau*v2
389  v3 = v( 3 )
390  t3 = tau*v3
391  v4 = v( 4 )
392  t4 = tau*v4
393  v5 = v( 5 )
394  t5 = tau*v5
395  v6 = v( 6 )
396  t6 = tau*v6
397  v7 = v( 7 )
398  t7 = tau*v7
399  v8 = v( 8 )
400  t8 = tau*v8
401  v9 = v( 9 )
402  t9 = tau*v9
403  v10 = v( 10 )
404  t10 = tau*v10
405  DO 200 j = 1, n
406  sum = v1*c( 1, j ) + v2*c( 2, j ) + v3*c( 3, j ) +
407  $ v4*c( 4, j ) + v5*c( 5, j ) + v6*c( 6, j ) +
408  $ v7*c( 7, j ) + v8*c( 8, j ) + v9*c( 9, j ) +
409  $ v10*c( 10, j )
410  c( 1, j ) = c( 1, j ) - sum*t1
411  c( 2, j ) = c( 2, j ) - sum*t2
412  c( 3, j ) = c( 3, j ) - sum*t3
413  c( 4, j ) = c( 4, j ) - sum*t4
414  c( 5, j ) = c( 5, j ) - sum*t5
415  c( 6, j ) = c( 6, j ) - sum*t6
416  c( 7, j ) = c( 7, j ) - sum*t7
417  c( 8, j ) = c( 8, j ) - sum*t8
418  c( 9, j ) = c( 9, j ) - sum*t9
419  c( 10, j ) = c( 10, j ) - sum*t10
420  200 CONTINUE
421  GO TO 410
422  ELSE
423 *
424 * Form C * H, where H has order n.
425 *
426  GO TO ( 210, 230, 250, 270, 290, 310, 330, 350,
427  $ 370, 390 )n
428 *
429 * Code for general N
430 *
431  CALL slarf( side, m, n, v, 1, tau, c, ldc, work )
432  GO TO 410
433  210 CONTINUE
434 *
435 * Special code for 1 x 1 Householder
436 *
437  t1 = one - tau*v( 1 )*v( 1 )
438  DO 220 j = 1, m
439  c( j, 1 ) = t1*c( j, 1 )
440  220 CONTINUE
441  GO TO 410
442  230 CONTINUE
443 *
444 * Special code for 2 x 2 Householder
445 *
446  v1 = v( 1 )
447  t1 = tau*v1
448  v2 = v( 2 )
449  t2 = tau*v2
450  DO 240 j = 1, m
451  sum = v1*c( j, 1 ) + v2*c( j, 2 )
452  c( j, 1 ) = c( j, 1 ) - sum*t1
453  c( j, 2 ) = c( j, 2 ) - sum*t2
454  240 CONTINUE
455  GO TO 410
456  250 CONTINUE
457 *
458 * Special code for 3 x 3 Householder
459 *
460  v1 = v( 1 )
461  t1 = tau*v1
462  v2 = v( 2 )
463  t2 = tau*v2
464  v3 = v( 3 )
465  t3 = tau*v3
466  DO 260 j = 1, m
467  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 )
468  c( j, 1 ) = c( j, 1 ) - sum*t1
469  c( j, 2 ) = c( j, 2 ) - sum*t2
470  c( j, 3 ) = c( j, 3 ) - sum*t3
471  260 CONTINUE
472  GO TO 410
473  270 CONTINUE
474 *
475 * Special code for 4 x 4 Householder
476 *
477  v1 = v( 1 )
478  t1 = tau*v1
479  v2 = v( 2 )
480  t2 = tau*v2
481  v3 = v( 3 )
482  t3 = tau*v3
483  v4 = v( 4 )
484  t4 = tau*v4
485  DO 280 j = 1, m
486  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
487  $ v4*c( j, 4 )
488  c( j, 1 ) = c( j, 1 ) - sum*t1
489  c( j, 2 ) = c( j, 2 ) - sum*t2
490  c( j, 3 ) = c( j, 3 ) - sum*t3
491  c( j, 4 ) = c( j, 4 ) - sum*t4
492  280 CONTINUE
493  GO TO 410
494  290 CONTINUE
495 *
496 * Special code for 5 x 5 Householder
497 *
498  v1 = v( 1 )
499  t1 = tau*v1
500  v2 = v( 2 )
501  t2 = tau*v2
502  v3 = v( 3 )
503  t3 = tau*v3
504  v4 = v( 4 )
505  t4 = tau*v4
506  v5 = v( 5 )
507  t5 = tau*v5
508  DO 300 j = 1, m
509  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
510  $ v4*c( j, 4 ) + v5*c( j, 5 )
511  c( j, 1 ) = c( j, 1 ) - sum*t1
512  c( j, 2 ) = c( j, 2 ) - sum*t2
513  c( j, 3 ) = c( j, 3 ) - sum*t3
514  c( j, 4 ) = c( j, 4 ) - sum*t4
515  c( j, 5 ) = c( j, 5 ) - sum*t5
516  300 CONTINUE
517  GO TO 410
518  310 CONTINUE
519 *
520 * Special code for 6 x 6 Householder
521 *
522  v1 = v( 1 )
523  t1 = tau*v1
524  v2 = v( 2 )
525  t2 = tau*v2
526  v3 = v( 3 )
527  t3 = tau*v3
528  v4 = v( 4 )
529  t4 = tau*v4
530  v5 = v( 5 )
531  t5 = tau*v5
532  v6 = v( 6 )
533  t6 = tau*v6
534  DO 320 j = 1, m
535  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
536  $ v4*c( j, 4 ) + v5*c( j, 5 ) + v6*c( j, 6 )
537  c( j, 1 ) = c( j, 1 ) - sum*t1
538  c( j, 2 ) = c( j, 2 ) - sum*t2
539  c( j, 3 ) = c( j, 3 ) - sum*t3
540  c( j, 4 ) = c( j, 4 ) - sum*t4
541  c( j, 5 ) = c( j, 5 ) - sum*t5
542  c( j, 6 ) = c( j, 6 ) - sum*t6
543  320 CONTINUE
544  GO TO 410
545  330 CONTINUE
546 *
547 * Special code for 7 x 7 Householder
548 *
549  v1 = v( 1 )
550  t1 = tau*v1
551  v2 = v( 2 )
552  t2 = tau*v2
553  v3 = v( 3 )
554  t3 = tau*v3
555  v4 = v( 4 )
556  t4 = tau*v4
557  v5 = v( 5 )
558  t5 = tau*v5
559  v6 = v( 6 )
560  t6 = tau*v6
561  v7 = v( 7 )
562  t7 = tau*v7
563  DO 340 j = 1, m
564  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
565  $ v4*c( j, 4 ) + v5*c( j, 5 ) + v6*c( j, 6 ) +
566  $ v7*c( j, 7 )
567  c( j, 1 ) = c( j, 1 ) - sum*t1
568  c( j, 2 ) = c( j, 2 ) - sum*t2
569  c( j, 3 ) = c( j, 3 ) - sum*t3
570  c( j, 4 ) = c( j, 4 ) - sum*t4
571  c( j, 5 ) = c( j, 5 ) - sum*t5
572  c( j, 6 ) = c( j, 6 ) - sum*t6
573  c( j, 7 ) = c( j, 7 ) - sum*t7
574  340 CONTINUE
575  GO TO 410
576  350 CONTINUE
577 *
578 * Special code for 8 x 8 Householder
579 *
580  v1 = v( 1 )
581  t1 = tau*v1
582  v2 = v( 2 )
583  t2 = tau*v2
584  v3 = v( 3 )
585  t3 = tau*v3
586  v4 = v( 4 )
587  t4 = tau*v4
588  v5 = v( 5 )
589  t5 = tau*v5
590  v6 = v( 6 )
591  t6 = tau*v6
592  v7 = v( 7 )
593  t7 = tau*v7
594  v8 = v( 8 )
595  t8 = tau*v8
596  DO 360 j = 1, m
597  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
598  $ v4*c( j, 4 ) + v5*c( j, 5 ) + v6*c( j, 6 ) +
599  $ v7*c( j, 7 ) + v8*c( j, 8 )
600  c( j, 1 ) = c( j, 1 ) - sum*t1
601  c( j, 2 ) = c( j, 2 ) - sum*t2
602  c( j, 3 ) = c( j, 3 ) - sum*t3
603  c( j, 4 ) = c( j, 4 ) - sum*t4
604  c( j, 5 ) = c( j, 5 ) - sum*t5
605  c( j, 6 ) = c( j, 6 ) - sum*t6
606  c( j, 7 ) = c( j, 7 ) - sum*t7
607  c( j, 8 ) = c( j, 8 ) - sum*t8
608  360 CONTINUE
609  GO TO 410
610  370 CONTINUE
611 *
612 * Special code for 9 x 9 Householder
613 *
614  v1 = v( 1 )
615  t1 = tau*v1
616  v2 = v( 2 )
617  t2 = tau*v2
618  v3 = v( 3 )
619  t3 = tau*v3
620  v4 = v( 4 )
621  t4 = tau*v4
622  v5 = v( 5 )
623  t5 = tau*v5
624  v6 = v( 6 )
625  t6 = tau*v6
626  v7 = v( 7 )
627  t7 = tau*v7
628  v8 = v( 8 )
629  t8 = tau*v8
630  v9 = v( 9 )
631  t9 = tau*v9
632  DO 380 j = 1, m
633  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
634  $ v4*c( j, 4 ) + v5*c( j, 5 ) + v6*c( j, 6 ) +
635  $ v7*c( j, 7 ) + v8*c( j, 8 ) + v9*c( j, 9 )
636  c( j, 1 ) = c( j, 1 ) - sum*t1
637  c( j, 2 ) = c( j, 2 ) - sum*t2
638  c( j, 3 ) = c( j, 3 ) - sum*t3
639  c( j, 4 ) = c( j, 4 ) - sum*t4
640  c( j, 5 ) = c( j, 5 ) - sum*t5
641  c( j, 6 ) = c( j, 6 ) - sum*t6
642  c( j, 7 ) = c( j, 7 ) - sum*t7
643  c( j, 8 ) = c( j, 8 ) - sum*t8
644  c( j, 9 ) = c( j, 9 ) - sum*t9
645  380 CONTINUE
646  GO TO 410
647  390 CONTINUE
648 *
649 * Special code for 10 x 10 Householder
650 *
651  v1 = v( 1 )
652  t1 = tau*v1
653  v2 = v( 2 )
654  t2 = tau*v2
655  v3 = v( 3 )
656  t3 = tau*v3
657  v4 = v( 4 )
658  t4 = tau*v4
659  v5 = v( 5 )
660  t5 = tau*v5
661  v6 = v( 6 )
662  t6 = tau*v6
663  v7 = v( 7 )
664  t7 = tau*v7
665  v8 = v( 8 )
666  t8 = tau*v8
667  v9 = v( 9 )
668  t9 = tau*v9
669  v10 = v( 10 )
670  t10 = tau*v10
671  DO 400 j = 1, m
672  sum = v1*c( j, 1 ) + v2*c( j, 2 ) + v3*c( j, 3 ) +
673  $ v4*c( j, 4 ) + v5*c( j, 5 ) + v6*c( j, 6 ) +
674  $ v7*c( j, 7 ) + v8*c( j, 8 ) + v9*c( j, 9 ) +
675  $ v10*c( j, 10 )
676  c( j, 1 ) = c( j, 1 ) - sum*t1
677  c( j, 2 ) = c( j, 2 ) - sum*t2
678  c( j, 3 ) = c( j, 3 ) - sum*t3
679  c( j, 4 ) = c( j, 4 ) - sum*t4
680  c( j, 5 ) = c( j, 5 ) - sum*t5
681  c( j, 6 ) = c( j, 6 ) - sum*t6
682  c( j, 7 ) = c( j, 7 ) - sum*t7
683  c( j, 8 ) = c( j, 8 ) - sum*t8
684  c( j, 9 ) = c( j, 9 ) - sum*t9
685  c( j, 10 ) = c( j, 10 ) - sum*t10
686  400 CONTINUE
687  GO TO 410
688  END IF
689  410 RETURN
690 *
691 * End of SLARFX
692 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine slarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
SLARF applies an elementary reflector to a general rectangular matrix.
Definition: slarf.f:124
Here is the call graph for this function:
Here is the caller graph for this function: