LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgehd2()

subroutine sgehd2 ( integer n,
integer ilo,
integer ihi,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) tau,
real, dimension( * ) work,
integer info )

SGEHD2 reduces a general square matrix to upper Hessenberg form using an unblocked algorithm.

Download SGEHD2 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGEHD2 reduces a real general matrix A to upper Hessenberg form H by
!> an orthogonal similarity transformation:  Q**T * A * Q = H .
!> 
Parameters
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]ILO
!>          ILO is INTEGER
!> 
[in]IHI
!>          IHI is INTEGER
!>
!>          It is assumed that A is already upper triangular in rows
!>          and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
!>          set by a previous call to SGEBAL; otherwise they should be
!>          set to 1 and N respectively. See Further Details.
!>          1 <= ILO <= IHI <= max(1,N).
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the n by n general matrix to be reduced.
!>          On exit, the upper triangle and the first subdiagonal of A
!>          are overwritten with the upper Hessenberg matrix H, and the
!>          elements below the first subdiagonal, with the array TAU,
!>          represent the orthogonal matrix Q as a product of elementary
!>          reflectors. See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]TAU
!>          TAU is REAL array, dimension (N-1)
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]WORK
!>          WORK is REAL array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix Q is represented as a product of (ihi-ilo) elementary
!>  reflectors
!>
!>     Q = H(ilo) H(ilo+1) . . . H(ihi-1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on
!>  exit in A(i+2:ihi,i), and tau in TAU(i).
!>
!>  The contents of A are illustrated by the following example, with
!>  n = 7, ilo = 2 and ihi = 6:
!>
!>  on entry,                        on exit,
!>
!>  ( a   a   a   a   a   a   a )    (  a   a   h   h   h   h   a )
!>  (     a   a   a   a   a   a )    (      a   h   h   h   h   a )
!>  (     a   a   a   a   a   a )    (      h   h   h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  h   h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  v3  h   h   h   h )
!>  (     a   a   a   a   a   a )    (      v2  v3  v4  h   h   h )
!>  (                         a )    (                          a )
!>
!>  where a denotes an element of the original matrix A, h denotes a
!>  modified element of the upper Hessenberg matrix H, and vi denotes an
!>  element of the vector defining H(i).
!> 

Definition at line 146 of file sgehd2.f.

147*
148* -- LAPACK computational routine --
149* -- LAPACK is a software package provided by Univ. of Tennessee, --
150* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
151*
152* .. Scalar Arguments ..
153 INTEGER IHI, ILO, INFO, LDA, N
154* ..
155* .. Array Arguments ..
156 REAL A( LDA, * ), TAU( * ), WORK( * )
157* ..
158*
159* =====================================================================
160*
161* .. Local Scalars ..
162 INTEGER I
163* ..
164* .. External Subroutines ..
165 EXTERNAL slarf1f, slarfg, xerbla
166* ..
167* .. Intrinsic Functions ..
168 INTRINSIC max, min
169* ..
170* .. Executable Statements ..
171*
172* Test the input parameters
173*
174 info = 0
175 IF( n.LT.0 ) THEN
176 info = -1
177 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
178 info = -2
179 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
180 info = -3
181 ELSE IF( lda.LT.max( 1, n ) ) THEN
182 info = -5
183 END IF
184 IF( info.NE.0 ) THEN
185 CALL xerbla( 'SGEHD2', -info )
186 RETURN
187 END IF
188*
189 DO 10 i = ilo, ihi - 1
190*
191* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i)
192*
193 CALL slarfg( ihi-i, a( i+1, i ), a( min( i+2, n ), i ), 1,
194 $ tau( i ) )
195*
196* Apply H(i) to A(1:ihi,i+1:ihi) from the right
197*
198 CALL slarf1f( 'Right', ihi, ihi-i, a( i+1, i ), 1, tau( i ),
199 $ a( 1, i+1 ), lda, work )
200*
201* Apply H(i) to A(i+1:ihi,i+1:n) from the left
202*
203 CALL slarf1f( 'Left', ihi-i, n-i, a( i+1, i ), 1, tau( i ),
204 $ a( i+1, i+1 ), lda, work )
205*
206 10 CONTINUE
207*
208 RETURN
209*
210* End of SGEHD2
211*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine slarfg(n, alpha, x, incx, tau)
SLARFG generates an elementary reflector (Householder matrix).
Definition slarfg.f:104
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123
Here is the call graph for this function:
Here is the caller graph for this function: