![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine cget22 | ( | character | transa, |
character | transe, | ||
character | transw, | ||
integer | n, | ||
complex, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex, dimension( lde, * ) | e, | ||
integer | lde, | ||
complex, dimension( * ) | w, | ||
complex, dimension( * ) | work, | ||
real, dimension( * ) | rwork, | ||
real, dimension( 2 ) | result ) |
CGET22
!> !> CGET22 does an eigenvector check. !> !> The basic test is: !> !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> !> using the 1-norm. It also tests the normalization of E: !> !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> !> where E(j) is the j-th eigenvector, and m-norm is the max-norm of a !> vector. The max-norm of a complex n-vector x in this case is the !> maximum of |re(x(i)| + |im(x(i)| over i = 1, ..., n. !>
[in] | TRANSA | !> TRANSA is CHARACTER*1 !> Specifies whether or not A is transposed. !> = 'N': No transpose !> = 'T': Transpose !> = 'C': Conjugate transpose !> |
[in] | TRANSE | !> TRANSE is CHARACTER*1 !> Specifies whether or not E is transposed. !> = 'N': No transpose, eigenvectors are in columns of E !> = 'T': Transpose, eigenvectors are in rows of E !> = 'C': Conjugate transpose, eigenvectors are in rows of E !> |
[in] | TRANSW | !> TRANSW is CHARACTER*1 !> Specifies whether or not W is transposed. !> = 'N': No transpose !> = 'T': Transpose, same as TRANSW = 'N' !> = 'C': Conjugate transpose, use -WI(j) instead of WI(j) !> |
[in] | N | !> N is INTEGER !> The order of the matrix A. N >= 0. !> |
[in] | A | !> A is COMPLEX array, dimension (LDA,N) !> The matrix whose eigenvectors are in E. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,N). !> |
[in] | E | !> E is COMPLEX array, dimension (LDE,N) !> The matrix of eigenvectors. If TRANSE = 'N', the eigenvectors !> are stored in the columns of E, if TRANSE = 'T' or 'C', the !> eigenvectors are stored in the rows of E. !> |
[in] | LDE | !> LDE is INTEGER !> The leading dimension of the array E. LDE >= max(1,N). !> |
[in] | W | !> W is COMPLEX array, dimension (N) !> The eigenvalues of A. !> |
[out] | WORK | !> WORK is COMPLEX array, dimension (N*N) !> |
[out] | RWORK | !> RWORK is REAL array, dimension (N) !> |
[out] | RESULT | !> RESULT is REAL array, dimension (2) !> RESULT(1) = | A E - E W | / ( |A| |E| ulp ) !> RESULT(2) = max | m-norm(E(j)) - 1 | / ( n ulp ) !> j !> |
Definition at line 142 of file cget22.f.