LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
zlartv.f
Go to the documentation of this file.
1 *> \brief \b ZLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a pair of vectors.
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download ZLARTV + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlartv.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlartv.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlartv.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE ZLARTV( N, X, INCX, Y, INCY, C, S, INCC )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INCC, INCX, INCY, N
25 * ..
26 * .. Array Arguments ..
27 * DOUBLE PRECISION C( * )
28 * COMPLEX*16 S( * ), X( * ), Y( * )
29 * ..
30 *
31 *
32 *> \par Purpose:
33 * =============
34 *>
35 *> \verbatim
36 *>
37 *> ZLARTV applies a vector of complex plane rotations with real cosines
38 *> to elements of the complex vectors x and y. For i = 1,2,...,n
39 *>
40 *> ( x(i) ) := ( c(i) s(i) ) ( x(i) )
41 *> ( y(i) ) ( -conjg(s(i)) c(i) ) ( y(i) )
42 *> \endverbatim
43 *
44 * Arguments:
45 * ==========
46 *
47 *> \param[in] N
48 *> \verbatim
49 *> N is INTEGER
50 *> The number of plane rotations to be applied.
51 *> \endverbatim
52 *>
53 *> \param[in,out] X
54 *> \verbatim
55 *> X is COMPLEX*16 array, dimension (1+(N-1)*INCX)
56 *> The vector x.
57 *> \endverbatim
58 *>
59 *> \param[in] INCX
60 *> \verbatim
61 *> INCX is INTEGER
62 *> The increment between elements of X. INCX > 0.
63 *> \endverbatim
64 *>
65 *> \param[in,out] Y
66 *> \verbatim
67 *> Y is COMPLEX*16 array, dimension (1+(N-1)*INCY)
68 *> The vector y.
69 *> \endverbatim
70 *>
71 *> \param[in] INCY
72 *> \verbatim
73 *> INCY is INTEGER
74 *> The increment between elements of Y. INCY > 0.
75 *> \endverbatim
76 *>
77 *> \param[in] C
78 *> \verbatim
79 *> C is DOUBLE PRECISION array, dimension (1+(N-1)*INCC)
80 *> The cosines of the plane rotations.
81 *> \endverbatim
82 *>
83 *> \param[in] S
84 *> \verbatim
85 *> S is COMPLEX*16 array, dimension (1+(N-1)*INCC)
86 *> The sines of the plane rotations.
87 *> \endverbatim
88 *>
89 *> \param[in] INCC
90 *> \verbatim
91 *> INCC is INTEGER
92 *> The increment between elements of C and S. INCC > 0.
93 *> \endverbatim
94 *
95 * Authors:
96 * ========
97 *
98 *> \author Univ. of Tennessee
99 *> \author Univ. of California Berkeley
100 *> \author Univ. of Colorado Denver
101 *> \author NAG Ltd.
102 *
103 *> \ingroup complex16OTHERauxiliary
104 *
105 * =====================================================================
106  SUBROUTINE zlartv( N, X, INCX, Y, INCY, C, S, INCC )
107 *
108 * -- LAPACK auxiliary routine --
109 * -- LAPACK is a software package provided by Univ. of Tennessee, --
110 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
111 *
112 * .. Scalar Arguments ..
113  INTEGER INCC, INCX, INCY, N
114 * ..
115 * .. Array Arguments ..
116  DOUBLE PRECISION C( * )
117  COMPLEX*16 S( * ), X( * ), Y( * )
118 * ..
119 *
120 * =====================================================================
121 *
122 * .. Local Scalars ..
123  INTEGER I, IC, IX, IY
124  COMPLEX*16 XI, YI
125 * ..
126 * .. Intrinsic Functions ..
127  INTRINSIC dconjg
128 * ..
129 * .. Executable Statements ..
130 *
131  ix = 1
132  iy = 1
133  ic = 1
134  DO 10 i = 1, n
135  xi = x( ix )
136  yi = y( iy )
137  x( ix ) = c( ic )*xi + s( ic )*yi
138  y( iy ) = c( ic )*yi - dconjg( s( ic ) )*xi
139  ix = ix + incx
140  iy = iy + incy
141  ic = ic + incc
142  10 CONTINUE
143  RETURN
144 *
145 * End of ZLARTV
146 *
147  END
subroutine zlartv(N, X, INCX, Y, INCY, C, S, INCC)
ZLARTV applies a vector of plane rotations with real cosines and complex sines to the elements of a p...
Definition: zlartv.f:107